
Entwurf und Implementierung einer
Virtualisierungsschicht für den

Betriebssystemkern „MetalSVM”

Design and Implementation of a Virtualization
Layer for the Operating System Kernel

“MetalSVM”

Jacek Galowicz
Matrikelnummer: 285548

Bachelorarbeit
an der

Rheinisch-Westfälischen Technischen Hochschule Aachen
Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Betriebssysteme

Betreuer: Dr. rer. nat. Stefan Lankes

Contents

List of Figures v

List of Tables vii

List of Listings ix

1. Introduction 1

2. MetalSVM on the Intel SCC 3

3. Hypervisors in Virtualization 5
3.1. Full Virtualization Versus Paravirtualization 6
3.2. Virtualizing the Intel x86 Architecture 7

3.2.1. Segmentation . 8
3.2.2. Privilege Levels, Rings . 9
3.2.3. Virtual Memory . 9
3.2.4. I/O Operations . 10
3.2.5. Interrupt Virtualization . 10

3.3. Hypervisors in Linux . 10
3.3.1. Lguest . 11

4. Design and Implementation of the Hypervisor for MetalSVM 13
4.1. Hypervisor Initialization . 17

4.1.1. Loading the Switcher Pages 17
4.1.2. Initializing Page Tables . 17
4.1.3. Creating /dev/lguest in the Filesystem 18
4.1.4. Architecture-Specific Initialization 18

4.2. Guest Boot and paravirt_ops . 19
4.3. Lguest Loader . 21
4.4. Host-Guest Context Switch . 24
4.5. Segments . 28

4.5.1. Special Segments for the Guest’s Kernel Space 28
4.5.2. Managing GDT Manipulation Requests 28

4.6. Interrupts . 30
4.6.1. Managing IDT Manipulation Requests 30
4.6.2. Guest-Interrupt Handling in the Hypervisor 31
4.6.3. Delivering Interrupts Back to the Guest 32

iii

Contents

4.6.4. The Guest’s Possibilities to Block Interrupts 33
4.6.5. Optimization: Direct Interrupt Delivery 35
4.6.6. Timer Supply . 36

4.7. Shadow Paging . 38
4.8. Hypercalls . 42

4.8.1. How the Guest Casts a Hypercall 42
4.8.2. Processing Hypercalls in the Hypervisor 43
4.8.3. Asynchronous Hypercalls as an Optimization 43

4.9. VirtIO Implementation . 44
4.9.1. The VirtIO Device Abstraction API 44
4.9.2. virtio_ring: Linux’ Virtqueue Implementation 45
4.9.3. VirtIO in MetalSVM . 46

5. Evaluation 49
5.1. Measurement Details and Interpretation 49

5.1.1. Host-Guest Context Switch 50
5.1.2. Page Fault . 50
5.1.3. System Calls . 51
5.1.4. The Jacobi Solver Application 51

6. Conclusion 53

A. Background Knowledge 55

B. Code Listings 57

Bibliography 63

iv

List of Figures

1.1. Establishing coherency domains . 2

2.1. Schematic top view SCC block diagram 3

3.1. The two different types of hypervisors 5
3.2. Privilege rings in the Intel x86 architecture 9
3.3. Structural differences between the Xen and KVM hypervisors 11

4.1. Flow of lguest’s main loop . 16
4.2. Hypervisor-recognition at boot time 19
4.3. Memory layout of host and guest . 21
4.4. Flow of lguest_loader’s main loop . 23
4.5. Structure of a segment descriptor . 29
4.6. Structure of an interrupt descriptor 31
4.7. Stack layouts before and after the occurence of an interrupt 33
4.8. Shadow paging mechanism explained 38
4.9. VirtIO ring structures . 46

v

List of Tables

3.1. Comparison between full- and paravirtualization 7

4.1. Lguest’s main parts . 13

5.1. Performance measurements taken in the guest system 50

vii

List of Listings

4.1. run_guest_once() procedure (metalsvm/drivers/lguest/x86/core.c) . 24
4.2. Host-guest switcher code (metalsvm/drivers/lguest/x86/switcher_32.S) 26
4.3. Definition of the lguest_pages structure and restoring the stack pointer

during guest-host context switch . 27
4.4. lguest_iret code (linux/arch/x86/lguest/i386_head.S) 34
4.5. copy_traps code (metalsvm/drivers/lguest/interrupts_and_traps.c) . 36
4.6. Shadow paging code (metalsvm/drivers/lguest/pagetables.c) 41
4.7. The virtqueue access function abstraction 45

B.1. Lguest’s main loop (metalsvm/drivers/lguest/lguest_core.c) 57
B.2. Linux’ startup_32 routine (linux/arch/x86/kernel/head_32.S) 58
B.3. Linux’ lguest_entry routine (linux/arch/x86/lguest/i386_head.S) . . 58
B.4. Linux’ lguest_init routine (linux/arch/x86/lguest/boot.c) 59
B.5. modified timer_handler() code (metalsvm/arch/x86/kernel/timer.c) . 60
B.6. VirtIO structure definitions (metalsvm/include/virtio/virtio_ring.h) . 61

ix

1. Introduction
In the last decades computer programmers were used to the fact that their old
programs did automatically run faster when executed on new computer generations.
This fact based on the condition of new computers’ higher clock frequencies which
allowed for executing more processor instructions within the same time. The growing
clock frequencies also led to growing heat generation and power consuption which
in turn became a problem for both laptop computers and bigger server farms.

As a reaction, the increase of processor frequency in new computers did nearly
stagnate a few years ago, but so did not the increase of the number of cores: Even
today’s laptop computers have up to about ten of them. Programmers need to
rewrite their programs to take advantage of this.

Such computer’s hardware either implements the symmetric multiprocessing (SMP)
or the message passing architecture. In SMP systems every core has an identical
view to the system’s memory space. This way the programmer only has to make
sure that the calculations his program does are properly parallelizable. He does
not have to care about which part of his parallelized program has to run on which
core as the cores have an identical view onto the memory space. This paradigm is
called shared memory programming. Since every core has its own cache, the hard-
ware needs to provide a mechanism to keep shared memory consistent between the
different caches. Commonly referred to as cache coherence, this mechanism involves
serialization of memory access. With a growing number of cores, this also results in
heavily growing demands to the memory-bandwidth.

Message passing computer systems solve this problem by providing every core
with its private memory space and bus. However, having outpaced SMP systems
in computer clusters in terms of prevalence, they are harder to program: Besides
parallelizing, the programmer has to explicitly move the data between the core’s
memory spaces to where it is used. In the long term, microprocessor manufacturers
seem to regard symmetric multiprocessing as a dead end.

When hardware of future generations will not provide an SMP-typical view on
the system’s memory, it will be a crucial task to achieve a shared memory environ-
ment with cache coherence by software. Although message passing applications scale
very well, shared memory can be beneficial in situations with dynamically chang-
ing memory access patterns. Shared memory platforms are also easier to deal with
when balancing the system load. This is where Intel’s Single-chip Cloud Computer
(SCC) joins research. The SCC is an experimental microprocessor prototype with
48 cores on its die (see Figure 2.1 on page 3) which do not support any cache coher-
ence. It is built to study the possibilities of future generation many-core computer
architectures. Most research is done in examining and demonstrating the use of the

1

1. Introduction

Application Application

Paravirtualized Linux Paravirtualized Linux

Virtualization Layer

frontend driver

comm layer comm layer

frontend driver

backend driver backend driver

device emulation device emulation
Virtualization Layer

miniOS miniOS miniOS miniOS

Core
0 … …Core

i
Core
i + 1

Core
47

Figure 1.1.: Establishing coherency domains

SCC as a message passing architecture using the external and on-die memory for
communication.

An attractive way of establishing a shared memory environment on this platform
is adding a virtualization layer between message passing operating system kernels
running on the cores and a single operating system kernel. The last-mentioned will
find itself on a large virtual SMP computer system. This shall be achieved with
a special small operating system running on each core providing the virtualization
environment for an unmodified Linux kernel (see Figure 1.1). To enable the trans-
parent use of a linear address space by the virtualized Linux kernel, the smaller
kernels below the virtualization layer have to manage data exchange between the
cores’ different address spaces.

The focus of this thesis is implementing this virtualization layer in the operating
system kernel MetalSVM, involving the port of an existing hypervisor implementa-
tion from the Linux kernel. This preliminary work allows later extension to a system
managing coherency domains spanning over multiple cores. The thesis begins with
describing MetalSVM and the Intel SCC together composing the target platform
in Chapter 2. A general explanation about virtualization and virtualization mecha-
nisms with focus on the Intel x86 architecture is given in Chapter 3. In this chapter
the distinction between full- and paravirtualization is illustrated to point out the
latter as most useful for the project and presents hypervisors in Linux which imple-
ment this approach. Finally, it explains the choice of which hypervisor to port to
MetalSVM. Chapter 4 gives very detailed insights into the actual implementation.

2

2. MetalSVM on the Intel SCC
MetalSVM is a small monolithic operating system kernel. Initially it shared the
largest part of its codebase with EduOS, a very basic operating system kernel devel-
oped for educational purposes. Both EduOS and MetalSVM have been developed at
the Chair for Operating Systems of RWTH Aachen University since 2010. The name
“MetalSVM” is a mix of the term bare metal and the abbreviation SVM standing
for “Shared Virtual Memory”.

The SCC’s 48 P54C cores are arranged pairwise on 6 × 4 tiles on the microchip’s
die. Each of them is equipped with each 16 kB L1 data and instruction cache as
well as 256 kB L2 cache. Up to 64 GB of external memory are provided by four
memory controllers surrounding the grid. Due to the architecture’s 32 bit limitation
only 4 GB of the memory can be addressed per core. A mechanism referred to as
lookup table (LUT) maps every core’s physical 4 GB address space to the system’s
up to 64 GB of extended memory. There is one LUT per core. Each one contains
256 entries, which map memory segments of 16 MB size to the corresponding ad-
dress in the core’s address space. Possible memory locations for mapping are the
private memory, local memory buffers, configuration registers, the system interface,
power controller, and system memory. The LUTs can be dynamically reconfigured
at runtime, what is especially interesting for possible implementations of shared
virtual memory. Every tile also has a small amount (16 kB) of additional memory,
namely the message passing buffer (MPB). This fast on-die memory can be used
for more efficient communication between the cores, as classic architectures usually

DDR3
MC

DDR3
MC

Router
Mesh
IF

256K
L2 $

P54C
2x16K L1 $

256K
L2 $

P54C
2x16K L1 $

MPB

DDR3
MC

DDR3
MC

R R R R R R

R R R R R R

R R R R R R

R R R R R R

Figure 2.1.: Schematic top view SCC block diagram

3

2. MetalSVM on the Intel SCC

only provide the relatively slow off-die memory for this purpose [10].
The idea to provide shared virtual memory on message passing architectures has

already been realized in clusters before. Previous approaches are, for example,
Treadmarks [2], ScaleMP [1], Cluster OpenMP [8], and vNUMA [3]. These differ in
various aspects: Some of them use virtualization to provide a transparent memory
space spanning over the cores/nodes in a cluster, others provide this functionality on
user space level. The majority of projects tried to establish shared virtual memory
on non-uniform memory access platforms. Those platforms are adversely affected by
communication latency, which is problematic in situations with dynamically chang-
ing memory access patterns and excessive synchronizing with locks. Finally, all
approaches have proven to be extremely sensitive to network latency and suffered
from lacking programming standards [6].

The SCC with its potential for low-latency-communication and uniform memory
access characteristics offers the possibility to try this concept without the limita-
tions, which are represented by latency and data locality on non-uniform memory
access platforms. Furthermore, its special registers enable for optimizing the lock
synchronization between cores. MetalSVM is specially suited for fast low-latency
inter-core communication exploiting the SCC’s message passing buffers. The estab-
lishment of shared virtual memory between the 48 cores is currently in development.
With a virtualization layer the MetalSVM cores will be able to cooperate together
hosting a single Linux kernel. Using virtualization, cores could even be multiplexed
or turned off completely for saving energy. Another feature is the planned virtu-
alization of I/O - presented solutions merely virtualized the memory. The Linux
kernel will be able to manage the SCC’s resources, just like it would on an ordinary
SMP architecture. Cache coherence will then be achieved by software [13].

4

3. Hypervisors in Virtualization
This chapter explains virtualization and describes the role of the hypervisor within
the virtualization of a computer system. After that, the Intel x86 architecture is
considered as the virtualization platform to compare two different virtualization
approaches and their adequacy for this project. At last different Linux hypervisors
are introduced, outlining the choice for implementing lguest in MetalSVM.

Definition 1 (Computer Virtualization) Virtualizing a computer means creat-
ing virtual instances of its hardware which do not physically exist.

All applications running on such a virtual computer system must run with the
identical effect as if they were running on a real machine. In this case, the virtu-
alizing machine is also called host machine, while the virtual computer system is
the guest machine. The program running on the host machine which is creating the
virtual computer system environment is referred to as the virtual machine monitor
(VMM) or hypervisor.

In 1973, Robert P. Goldberg distinguished between two types of hypervisors [5]:

Type I Bare metal hypervisor (Examples: Xen, KVM, lguest)

Type II Extended host hypervisor running under the host operating system
(Examples: QEMU, Bochs)

OS OS

Hardware

Hypervisor

(a) Type I hypervisors

Hypervisor

OS

Hypervisor

OS

User Space Apps

Hardware

OS

(b) Type II hypervisors

Figure 3.1.: The two different types of hypervisors

5

3. Hypervisors in Virtualization

Type I hypervisors run the virtual machines directly on the hardware. The ex-
amples Xen, KVM and lguest do virtualization within kernel space with highest
processor privileges. KVM and lguest consist of kernel modules and a user space
program [11] [15]. Xen is different and matches the Type I model more obviously:
It provides a virtualization layer directly running on the bare metal machine (see
also Figure 3.3 on page 11). Even the operating system instance which is used to
manage the virtual machine configuration is being run as a guest [19]. This kind of
hypervisor is often used in mainframe systems when the real machine is not used for
anything else than virtualizing its guests to achieve high performance. Production
applications will then be run on the guest machines.

Type II hypervisors are just user space applications being run on the host oper-
ating system. They are used when efficiency is only a minor constraint, but can
be more flexible by being able to emulate a different processor/computer architec-
ture for example. The lack of efficiency comes from emulating every instruction in
software step by step [7].

Performance is an important constraint for this project. Thus, in the following
Type II hypervisors will not be minded. The next section analyzes performance
aspects of two different methods of Type I hypervisors to find the most suitable
kind of hypervisor.

3.1. Full Virtualization Versus Paravirtualization
The traditional idea of virtual machine monitors provides an architecture completely
identical to the model architecture being virtualized. This method is called full vir-
tualization. On the one hand the guest operating system will then be able to run
within this environment without the need for modification, but on the other hand
this brings much overhead: Because the performance-aware user does not want to
emulate every instruction in software, as much instructions as possible should be
directly executed on the hardware. The problem here is that many computer archi-
tectures’ design-goals did not imply virtualization. Operating systems designed for
those will usually need to execute a certain set of privileged operations during nor-
mal operation. Those have to be trapped and emulated in software by the hypervisor.
Especially Intel’s x86 architecture fits into this group of architectures [14].

Trapping and emulating means switching back from the guest context to the hy-
pervisor whenever the guest tried to execute an instruction which involves privileges
it does not have. In general, the hypervisor does not know when and which privi-
leged instructions occur in the future. Therefore, it depends on the programmer to
find out how the architecture allows for stopping the guest’s execution in the right
moment. On some architectures this can end up in complicated workarounds and
surely will slow down execution speed.

If the guest operating system can be modified to improve the performance, it can
be called into question if it is still necessary to virtualize the whole architecture
completely. The Denali isolation kernel for example was one of the first VMM

6

3.2. Virtualizing the Intel x86 Architecture

Full Virtualization Paravirtualization
no change in guest OS guest OS must be ported
slow due to trap & emulate overhead fast - no instruction trapping & emulation
complex emulation of real hardware simple & fast virtual device interfaces

establishing (VirtIO [16])
operating from user space without embedded into kernel (Type I)
privileges (mainly Type II)

Table 3.1.: Comparison between full- and paravirtualization

designs with the creation of a more abstract, but still x86-based architecture in
mind. The guest kernel did not have to be compiled with special compilers, as it
was developed for the x86 architecture instruction set, but it did not contain any
privileged operation instruction calls either. This way the hypervisor’s overhead of
trapping and emulating in software was reduced significantly. The lack of privileged
instruction set use was achieved by letting the guest kernel know it is a guest and
make it call the hypervisor whenever it needs a privileged operation to be performed.

One important kind of and good example for privileged operation is hardware
I/O: A dominant cause for traps and software emulation can be credited against
emulating hardware devices. For this purpose Whitaker et al. designed simple
hardware device abstractions of their physical counterparts: Drivers for such virtual
devices can be split into frontend and backend parts. The frontend part lies within
the guest kernel and uses buffers to communicate with the backend driver, which is
managed by the hypervisor. Whenever hardware I/O is needed the guest kernel fills
the device buffer and issues one single hypervisor call. The overhead of executing
a sequence of I/O-instructions which would have to be emulated step by step can
be avoided this way. Privileged operations and the overhead of their emulation are
therefore kept out of the VMM implementation.

This method is called paravirtualization [18] [17]. A summarized comparison
between full virtualization and paravirtualization is found in Table 3.1. Calls of a
paravirtualized guest operating system to its hypervisor are referred to as hypercalls.
For every privileged action, one special hypercall must exist. This is part of the
common interface host and guest must implement.

The next section reveals in more detail why Intel’s x86 architecture is complicated
to virtualize. Furthermore it exemplifies where in the application flow paravirtual-
ization achieves reduction of both overhead and complexity within the hypervisor
by modifying the guest.

3.2. Virtualizing the Intel x86 Architecture
It was already hinted at before, that the Intel x86 architecture is notoriously difficult
to virtualize due to its design lacking focus on virtualization. The problems which

7

3. Hypervisors in Virtualization

need to be solved by a hypervisor on this architecture are listed here.
All assumptions about the difficulty of virtualizing x86 processors are not true

for current generations due to their support of new techniques for native hardware
virtualization: With Intel VT and AMD-V, system programmers have the possibility
to run guests within a hardware-provided virtual environment with several overhead-
lowering advantages [4]. This thesis covers virtualization mainly for the Intel SCC
processor. The SCC’s cores originate from the Intel P54C architecture which is too
old to support hardware virtualization features. Therefore, these will be ignored
here.

The following subsections describe typical x86-mechanisms which need to be han-
dled by the running operating system. A guest operating system also has to handle
them, but should not be allowed to access the corresponding instruction calls. Af-
ter considering the costs of trapping and emulating all of them, it becomes clear
why paravirtualization and the guest’s virtualization-awareness allow for very much
optimization. Instead of trapping every single privileged instruction the guest ex-
ecutes, it is possible to bundle everything what needs to be accomplished by the
corresponding code section into one hypervisor call. The following information has
been gathered from Intel’s official software developer’s manual [9] and J. Robin’s
and C. Irvine’s analysis of the Intel Pentium as a virtualization platform [14].

3.2.1. Segmentation

A more traditional approach than paging (virtual memory) to organize physical
memory distribution and access privileges of multiple processes on the x86 platform
is segmentation. Segmentation enables isolating code, data and stack areas per
process from each other. Segments define offset and range within memory space,
privilege level, etc. Still until today, the use of paging on 32 bit x86 CPUs is optional
– segmentation is not.

So, even with a paging-enabled flat address space the code-, data- and stack seg-
ment registers have to be set properly at any time. The code segment, for example,
is used by the processor to check if a process is allowed to continue if it tries to use
privileged instructions.

Each segment is addressed by an index number in a descriptor table listing all
available segments - the Global Descriptor Table (GDT). Before a segment is used
it has to be described in the GDT. Loading/Storing the GDT with the instructions
“sgdt” and “lgdt” demands operating at the highest privilege level. A guest machine
must not be allowed to edit entries in the GDT itself directly, because this could
be exploited for reaching a higher privilege level. There is also a Local Descriptor
Table (LDT) for thread-local segments. Thus any access to GDT/LDT needs to be
trapped and emulated, what is slowing down execution speed.

8

3.2. Virtualizing the Intel x86 Architecture

Ring 0

Ring 1

Ring 2

Ring 3

Kernel mode (most privileged)

Device drivers

User mode (least privileged)

Figure 3.2.: Privilege rings in the Intel x86 architecture

3.2.2. Privilege Levels, Rings

The x86 platform partitions privileges to four levels, numbered from 0 to 3. Level 0
stands for the highest privilege level — 3 for the lowest. On Intel CPUs, privilege
levels are referred to as rings (see Figure 3.2). Usually, the operating system kernel’s
stack-, data- and code segment use privilege level 0 while user space applications use
level 3 for each segment. The segment’s descriptor denotes the descriptor privilege
level number its owners obtain after loading it into a segment register. Loading
a segment with a specified descriptor privilege level requires a certain minimum
privilege level.

Of course one will not want to let the guest operating system run in ring 0. Most
hypervisors choose ring 1 for their guests to enable automatic trapping on privileged
operations. The hypervisor must keep track of the segment descriptors to be able to
secure ring 0 from the guest. Having trapped a guest which tried to manipulate a
segment descriptor, the hypervisor will need to check if the lowest privilege number
the guest assigns to its own segment descriptors is equal or above 1.

3.2.3. Virtual Memory

Virtual memory/paging involves the CPU using specific data structures maintained
by the operating system. The architecture provides special registers (CR0 – CR4)
for this purpose.

Again, access to this registers is restricted and must be trapped and emulated
slowing down the virtual machine’s execution speed. However, the whole page tree
structure exposed to the MMU needs to be maintained separated from the guest’s
page tree. The guest’s page tree should be considered unsafe as the guest must be
prevented from ever mapping host memory to its address space. The guest could
otherwise exploit paging to gain full access to the host system.

9

3. Hypervisors in Virtualization

3.2.4. I/O Operations
The guest should not be allowed to do any I/O operations on the hardware directly
and should rather operate on virtual devices. Therefore the hypervisor must trap any
I/O access and either simulate the non-existence of I/O devices or emulate virtual
ones. The latter method means the overhead of a full software implementation of
the according hardware interface.

3.2.5. Interrupt Virtualization
As the guest should not have control over all interrupts, both Interrupt Descriptor
Table (IDT) and EFLAGS register (manipulated by the “pushf”, “popf”, “cli”
and “sti” instructions) need to be isolated from its access.

Manipulation attempts on the IDT and instructions manipulating the EFLAGS
register therefore need to be trapped. Interrupts can be delivered to the guest by
setting it into an interrupt situation with preconfigured stack- and segment config-
uration. This conserves the hypervisor’s control, but slows down each interrupt.

Optimization can still be accomplished by delivering interrupts from the hardware
directly into the guest without waking the hypervisor. It is important that the
hypervisor ensures safe conditions when it installs the according IDT entry.

3.3. Hypervisors in Linux
The first free type I hypervisor implemented for Linux was Xen, released in october
2003 at Cambridge.1 It supports both full virtualization and paravirtualizion. Xen
matches the type I hypervisor definition very well: It implements a layer running
directly on the hardware and thus it is positioned even beneath the operating system
which is used for administration of the virtual machines [19].

Another virtualization solution for Linux is KVM (“Kernel-based Virtual Ma-
chine”) which was released in October 2006. Also being a type I hypervisor, it does
not match the type I definition as clearly as Xen. There is no KVM layer below the
host operating system. KVM VMs will be run within an instance of QEMU utilizing
a KVM Linux kernel module. This way, execution speed and privilege critical parts
of the VM can be run on the bare metal machine by the host kernel [11].

The simplicity of loading a single set of modules (KVM) instead of reconfiguring
the whole system to support virtualization (Xen) caused KVM’s popularity to raise
over Xen’s.

Guest Linux kernels running under both hypervisors need to reimplement privilege-
critical kernel functions to use hypercalls to delegate privileged tasks to the hyper-
visor. On the Kernel Summit in 20062 (still before KVM was published), Paul Rus-
sell (known under the name of Rusty Russel) proposed a simple solution to unify

1Official announcement: http://sourceforge.net/mailarchive/message.php?msg_id=
5533663

2http://lwn.net/Articles/191923/

10

http://sourceforge.net/mailarchive/message.php?msg_id=5533663
http://sourceforge.net/mailarchive/message.php?msg_id=5533663
http://lwn.net/Articles/191923/

3.3. Hypervisors in Linux

Xen Hypervisor Linux Kernel

Bare Metal Hardware Bare Metal Hardware

Dom0
VM Mgmt,
IO

DomU
Guest OS

DomU
Guest OS

DomU
Guest OS

User
Process

User
Process

Guest User
Process

Qemu I/O Qemu I/O

Guest User
Process

KVM module

Figure 3.3.: Structural differences between the Xen and KVM hypervisors

the paravirtualization interface in Linux as a guest-side kernel: A structure called
paravirt_ops embodying a set of function call pointers to system-critical func-
tions.3 Those can be configured at boot time after detection of the right hypervisor
to match its interface. This way the same kernel can run on a real machine or on
one of the supported hypervisors without recompiling, which until today are Xen,
KVM, VMWare’s VMI and lguest [12].

3.3.1. Lguest
Lguest is somewhat different compared to the other hypervisors. Rusty Russell
wrote it at first to show how simple and useful his paravirt_ops proposal is. In
the end it turned out to be a complete hypervisor with I/O-drivers for block devices
and network. Without features besides the core functionality of a hypervisor and
implemented with just about 5 000 lines of code, it is quite spartan. Just like KVM,
it brings its own Linux kernel module and guest kernel loader terminal application.
It is very limited due to its lacking support for SMP at guest side, 64 bit kernels
and suspend/resume features. Nevertheless it will run on virtually any x86 CPU
because it does not depend on Intel VT or AMD-V – KVM does [15].

Another simplicity-enabling design choice of lguest is its lack of an application
binary interface (ABI): It was not developed around a bold and complicated inter-
face, whereas ABIs define strict and extensive conventions like data types, sizes and
alignments. This makes lguest perfect for experimenting.

Being a 32 bit architecture and not providing Intel VT extensions, the Intel SCC
perfectly matches into lguest’s set of target platforms. Also, due to its simplicity
and comfortably modifiable design, it was chosen as the right hypervisor for being
ported to MetalSVM.

3Introduced by patch: https://github.com/torvalds/linux/commit/d3561b7

11

https://github.com/torvalds/linux/commit/d3561b7

4. Design and Implementation of the
Hypervisor for MetalSVM

Lguest’s implementation in MetalSVM is very similar to the original implementation
in Linux. This chapter explains the implementation in the MetalSVM kernel and
outlines structural differences to the Linux kernel. Lguest does in general consist
of five parts – namely the context switcher, the user space loader application, the
general hypervisor module itself, the paravirt_ops structure, and VirtIO front- and
backend drivers.

The hypervisor module embodies the host’s functionality to maintain the virtu-
alization environment for the guest kernel. Both host and guest share the con-
text switcher code page which manages the change between their execution con-
texts. Implementing the paravirtualization interface between host and guest, the
paravirt_ops structure and the functions/procedures it points to are located in
the guest kernel. Device driver I/O is implemented at host and guest side in the
backend and frontend part of the VirtIO driver implementation. Finally, the virtu-
alization functionality is provided to the user via the user space loader application.
Table 4.1 gives a brief picture of which part of the code is executed at host or guest
side:

Host side Guest side
Context Switcher

User Space Loader paravirt_ops
Hypervisor module

VirtIO backend driver VirtIO frontend driver

Table 4.1.: Lguest’s main parts

Context switcher and loader will be explained in their own sections later. The
Hypervisor module is more complex and is split into several sections, while more
general explanations will be found here.

To make clear how the parts work together, the application flow starting with
the boot of the real machine will be described in sequential order until the guest
operating system shell is started:

1. The reset pin of the real machine is released.

2. MetalSVM starts booting.

13

4. Design and Implementation of the Hypervisor for MetalSVM

3. MetalSVM initializes the whole system and calls lguest_core_init()1 at
last.

4. The lguest initialization call creates a character device at /dev/lguest in the
file system tree.

5. The host system is initialized and user space applications will be started now.

6. Lguest_loader is the user space application which does the virtualization in
cooperation with the MetalSVM kernel.

7. After lguest_loader initialized the virtual memory environment for the guest,
it informs the MetalSVM kernel using the /dev/lguest interface.

8. Kernel side initialization for the new guest is done.

9. Lguest_loader will now enter its main loop where it reads from /dev/lguest
and handles its output continuously. (see Figure 4.4 on page 23)

10. The virtualization itself happens in kernel space during each read(/dev/lguest)
call: In general, the hypervisor switches to guest execution and handles inter-
rupts and other events afterwards. This is done in a loop which is explained
in the following.

11. The read() system call returns whenever any virtual device I/O (VirtIO)
needs to be processed. System crashes and shutdowns also end up this way.

The virtualization loop in kernel space within run_guest() (see Listing B.1)
mentioned in step 10 is visualized in Figure 4.1. Rectangles with rounded corners
denote actions on which run_guest() either breaks out of the loop to return to user
space, or to stop execution.

∙ lguest_arch_run_guest()2 performs the context switch to the guest system.
Any interrupts must be disabled before entering.

∙ Whenever an interrupt occurs lguest_arch_run_guest() returns. Traps will
be processed in lguest_arch_handle_trap()2, interrupts have to be delivered
to the guest at the next context switch.

∙ Hypercalls are processed by do_hypercalls()3. As it is possible to bundle
multiple asynchronous hypercalls within a list, they will be processed in a loop.

∙ A notify event occurs on virtual guest device I/O. In this situation run_guest()
returns back to user space, as the backend drivers are not implemented in the
kernel.

1defined in metalsvm/drivers/lguest/lguest_core.c
2defined in metalsvm/drivers/lguest/x86/core.c
3defined in metalsvm/drivers/lguest/hypercalls.c

14

∙ If the last interrupt stopping the guest machine was an interrupt which should
be delivered back to it, this will be done just before entering the guest again:
The interrupt can be delivered by forming the guest stack just like it would
look in case of a real interrupt.

∙ Another cause to return to user space are cases which cause the guest machine
to stop – like crashes, shutdowns, and reboot attempts.

∙ The virtualization process can be made subject to being rescheduled, if the
guest halts in inactivity waiting for further interrupts, unless there are inter-
rupts waiting to be delivered.

15

4. Design and Implementation of the Hypervisor for MetalSVM

run_guest()

lguest_arch_run_guest()

lguest_arch_handle_trap()

do_hypercalls()

Deliver interrupt by
preparing guest stack

Any hypercalls?

Any notify event?

Interrupts pending?

Return notify

Return error value Guest dead?

Guest CPU halted?

Interrupts pending?

reschedule()

yes

yes

yes

yes

yes

process async
hcalls

hcall was a
noti!cation

no

no

no

no

no

no

Figure 4.1.: Flow of lguest’s main loop

16

4.1. Hypervisor Initialization

4.1. Hypervisor Initialization
Before being able to provide a virtualization interface for the user space guest
loader, some initialization in the MetalSVM kernel is done at boot time. Just like
UNIX operating systems do, MetalSVM provides a /dev directory in the filesystem
where it keeps user space accessible files representing devices. The corresponding
lguest-file is a character device both accepting and emitting character streams called
/dev/lguest. This is done in the lguest_core_init()4 procedure.

The whole initialization process consists of 4 parts:

1. Loading the switcher pages

2. Initializing the part of the pagetables every guest initially uses

3. Creating the character device file /dev/lguest in the file system

4. Initializing architecture-specific data structures of both host and future guests

4.1.1. Loading the Switcher Pages
The switcher pages area in the host’s and guest’s memory space consists of three
pages: One page containing the actual code which manages the context switch
between host and guest and two further pages which are for storing host and guest
states. If the host is an SMP system, the both pages for storing host/guest states
exist once per every CPU in the system, because multiple guests can be run at the
same time.

Initializing those means allocating memory for an array keeping pointers to every
page and for the pages themselves. The first allocated page is then used for con-
taining the switcher code. It will be copied from where it is initially located in the
kernel to the beginning of this page.

After that, the first switcher page containing the context switch instructions
is mapped to SWITCHER_ADDRESS on every cpu’s address space. The per-CPU-
pages are mapped behind this first switcher page on the corresponding CPUs.
SWITCHER_ADDRESS is a constant value which is set to 0xFFC00000 in the most
cases, but can be different. As those pages also will be mapped in the guest address
space at the same address location, the very end of the 32 bit address space is an
appropriate location.

4.1.2. Initializing Page Tables
Early at boot the guest kernel will be instructed not to use any page from between
SWITCHER_ADDRESS to the very end of the memory space. This leads to the same
few last page directory entries in every guest space if several guests are running at
the same time. The corresponding page tables are created now.

4defined in metalsvm/drivers/lguest/lguest_core.c

17

4. Design and Implementation of the Hypervisor for MetalSVM

To secure the host state keeping memory structures while the CPU is operating
in guest context, the switcher page containing the host state is mapped read-only
in the guest’s page tables. Of course the context switcher code page is mapped
read-only, too. These page directory and page table entries will be shared between
all guests. The guest kernels will not map their own pages into this area.

4.1.3. Creating /dev/lguest in the Filesystem
MetalSVM provides functions and data structure definitions to enable the abstrac-
tion of system functions to file system I/O character streams. Therefore the /dev
filesystem node is found by using finddir_fs(fs_root, "dev") and then a new
node with the filename lguest is initialized and installed within the former one.

The special attributes of this file system node are its character device type and the
corresponding pointers to functions for the system calls open(), close(), read()
and write(). Utilizing these, lguest provides the interface for communication with
its user space application.

4.1.4. Architecture-Specific Initialization
The initial interrupt descriptor table of all guests is the same. Before being ready to
use, the interrupt handler’s address pointers within every entry need to be relocated
with the offset of the actual switcher page address.

Afterwards, the IDT, GDT and Task State Segment (TSS) descriptors are set up
to values which are the same for every initial guest. The TSS contains a bitmap
denoting which I/O ports the corresponding running process is allowed to use. This
bitmap’s fields are all set to a value representing the meaning “none”, because the
guest must not do any I/O by itself.

While switching the context and generally later in guest kernel space, host/guest
kernels use the same segment numbers for their code and data segment (notably
LGUEST_CS and LGUEST_DS). Their descriptors are configured with the usual flags
corresponding to code/data segments, but the guest version of those is not configured
to make the CPU operate on privilege ring 0, of course. These descriptors are
configured here and the host version is installed into the host GDT.

Every context switch from host to guest will be started with an lcall instruction
later. As the only parameter to this instruction is a structure keeping the target
code’s address offset and segment, this structure is initialized now to the switcher
code address and LGUEST_CS segment.

18

4.2. Guest Boot and paravirt_ops

Early boot code

Init paging
Load segment regs etc.

Continue boot process

Lguest_entry
INIT-Hypercall

Initialize paravirt_ops

Am I a guest? yesno

Figure 4.2.: Hypervisor-recognition at boot time

4.2. Guest Boot and paravirt_ops
Of course, as in paravirtualization host and guest have to cooperate, the guest must
know it is a guest running under control of a hypervisor instead of running alone on
the bare metal system.

Early at boot, the Linux kernel will enter its startup_32 routine5. It clears the
uninitialized C variables by writing zeros over the whole BSS range. Then it moves
the boot header structure (boot_params) as well as the kernel command line string
to another place in the memory. If paravirtualization guest support was enabled
at compile time, it will then check the boot_params structure’s subarch field6 (see
Listing B.2).

If this field’s value is 17 then it recognizes itself as a guest of the lguest hypervisor
and calls lguest_entry8. This procedure steps over the initialization of paging etc.
since this is already done by the hypervisor (see Figure 4.2). The first thing to
happen in lguest_entry (see Listing B.3) is the initialization hypercall to the host.
The only parameter is the address of the guest’s lguest_data structure. Now the
host can initialize the guest’s clock, frequency setting and inform the guest about
its allowed memory dimensions by writing this information back into that structure.

Back in guest kernel space, the kernel reaches its first instructions generated of
C-code while entering lguest_init() (see Listing B.4).

The paravirt_ops structures’ function pointers are set to the right paravirtual-
5defined in linux/arch/x86/boot/compressed/head_32.S
6Introduced by patch: https://github.com/torvalds/linux/commit/e5371ac
7Value 0 stands for a normal PC architecture without any hypervisor, 2 stands for Xen
8defined in linux/arch/x86/lguest/i386_head.S

19

https://github.com/torvalds/linux/commit/e5371ac

4. Design and Implementation of the Hypervisor for MetalSVM

ization procedure calls. The kernel is now able to cooperate with its host and will
not try to execute instructions which require a higher privilege level. Between some
more hardware registration the virtual console device is registered and callbacks for
crash situations and shutdown are set.

Now the i386_start_kernel()9 procedure is called and the kernel finally con-
tinues executing its usual boot code.

9defined in linux/arch/x86/kernel/head32.c

20

4.3. Lguest Loader

S
w

itch
e
r p

a
g

e
s

In
itrd

V
irtIO

 d
e
v
ice

 p
a
g
e
s

Host address space

Guest address space

guest_base

get_pages(n)

guest_limit

Address 0 4GB

Figure 4.3.: Memory layout of host and guest

4.3. Lguest Loader
The whole virtualization is initiated by a simple user space process. In this imple-
mentation the program is called lguest_loader. It takes the following command line
parameters:

∙ Guest kernel image file system path

∙ The guest’s initial ramdisk image file system path

∙ The guest’s physical memory size

∙ Guest kernel command line parameters (optional)

Subsequently, it will allocate the guest’s later physical memory using malloc():
This sector’s size is the size parameter the user provided plus the device pages
(default constant value is 256 pages) size. This area needs to be aligned to page
boundaries. In the following, the address of the beginning of this area will be denoted
by guest_base and the size of this area without the device pages by guest_limit
(see Figure 4.3).

For the user space process the guest’s physical address space is just this linear
range. Hence, to calculate from host-virtual to guest-physical addresses it is only
required to subtract guest_base—or to add this value to convert a guest-physical
address to host-virtual.

Loading the kernel image file is a straightforward process: At first, the file is
checked for magic strings indicating it is an ELF file, then its ELF-header is checked.
Finally, the ELF load sections are loaded to the proper positions in the guest-physical
memory. The initial ramdisk is loaded to the end of the guest’s memory area.

21

4. Design and Implementation of the Hypervisor for MetalSVM

At current development state, the loader only implements a virtual console device
which is initialized then. Due to the complexity of the VirtIO interface, details
on the interface itself will be explained later. The virtual interfaces utilize buffers
which need to be mapped at host- and guest-side. The function get_pages() obtains
memory for this buffers by pushing the guest_limit border deeper into the VirtIO
device pages area.

The last step before telling the hypervisor about the guest is providing a proper
boot_params structure. This structure is placed at guest-physical address 0 and
contains the following information:

∙ An e820 memory map with an entry specifying the guest’s physical memory
size

∙ A pointer to the kernel’s command line parameters (which are copied into the
guest memory just behind the boot_params structure)

∙ If provided, the initial ramdisk image’s position and size

∙ The hardware_subarch field (as already described in the section before) is set
to 1 (Indicating the presence of the lguest-hypervisor). Early at boot time,
the guest kernel will check this value and recognize that it is running under a
hypervisor

∙ There is also a variable loadflags where the KEEP_SEGMENTS flag is enabled to
hold the booting kernel off reloading the segment registers since the hypervisor
will have it set properly already

Telling the hypervisor about the new guest is done by writing information to the
/dev/lguest file: This information consists of 16 bytes which contain the following:

∙ an enumeration value LHREQ_INITIALIZE to denote the format of the next
written bytes

∙ the host-virtual guest_base address

∙ the number of pages between guest_base and guest_limit

∙ the guest-physical start address of the kernel executable.

In the meantime, in kernel space, the hypervisor allocates all structures it needs to
manage the guest and initializes the guest’s registers (by choosing the right segments,
EFLAGS, instruction pointer, etc.), its GDT and initial page mapping in the shadow
pages. Before boot, the initial page mapping contains identity mapping for all guest-
physical pages. Linux kernel space mappings begin at an offset of PAGE_OFFSET
which in x86 is at address 0xC0000000 and are initially mapped to page frames 0
and following. The switcher pages (see Figure 4.3) are mapped at the same address
as in the host.

22

4.3. Lguest Loader

Lguest_loader‘s
Main Loop

User Space Kernel Space

Shell/Device
IO

Device Notify?

Process Interrupts
Hypercalls

read (/dev/lguest) Run Guest

yes

no

Figure 4.4.: Flow of lguest_loader’s main loop

After returning to user space from the write() call to /dev/lguest everything is
ready to start the guest machine. Lguest_loader will now enter its run_guest() pro-
cedure which merely contains an infinite loop where a read() call on /dev/lguest
and processing code for its output is located. (see Figure 4.4)

For the whole lifetime of the guest system, the virtualization will take place while
lguest_loader is blocking on the read() call. This call returns to user space when-
ever critical error messages or virtual device events for device output occur or if the
guest just wants to shut down or reboot. The guest kernel also emits boot messages
this way before its virtual console is initialized.

23

4. Design and Implementation of the Hypervisor for MetalSVM

4.4. Host-Guest Context Switch
Switching the context from host to guest and back requires saving all register states
of one machine and restoring the state of the other machine. On the x86 architecture
this also involves loading the right segments, a different GDT, IDT and TSS as well
as switching the MMU to another page tree. In the end the whole context switching
procedure should also be NMI-safe. The code which manages this task is usually
mapped to address 0xFFC00000, because this way the last page directory entry
can be used for the switcher code and the state structures of host and guest. The
Linux kernel does also have an internal variable __FIXADDR_TOP which is used to
specify the last mappable virtual address. Both Linux host and guest kernels do
this to protect this area. Due to architectural restrictions, MetalSVM uses address
0xFF800000.

To switch from host to guest, the hypervisor just needs to call the run_guest_once()
procedure (see Listing 4.1) which first calls copy_in_guest_info() to copy the
guest state information into a data structure mapped just behind the switcher page.
Every core on the system has its own structure of this kind. On single core systems
this is rather uninteresting, as this procedure does only copy conditionally: Either
if a different guest than before is run on the same core or if a guest is moved to
another core. �
1 static void run_guest_once(struct lg_cpu *cpu , struct lguest_pages *pages)
2 {
3 unsigned int clobber;
4
5 /* Copy over guest - specific data into this cpu ’s struct lguest_pages */
6 copy_in_guest_info(cpu , pages);
7
8 /* Set trapnum to impossible value . In case of NMI while switching
9 * this will help to identify the situation */

10 cpu ->regs ->trapnum = 256;
11
12 asm volatile("pushf;␣lcall␣*lguest_entry"
13 : "=a" (clobber), "=b" (clobber)
14 /* EAX contains the pages pointer ,
15 * EBX contains physical address of guest ’s page directory */
16 : "0" (pages),
17 "1" (cpu ->lg->pgdirs[cpu ->cpu_pgd].pgdir)
18 : "memory", "%edx", "%ecx", "%edi", "%esi");
19 }�

Listing 4.1: run_guest_once() procedure (metalsvm/drivers/lguest/x86/core.c)

The trapnum variable within the core’s regs structure (line 10 in the code listing)
is used to save the last interrupt number from which the guest was interrupted. A
value of 256 is impossible, because the x86 only allows for numbers 0 to 255. This is
used to detect NMIs which occured during the context switch: If an NMI occurs, the
machine will immediately switch back just like on any other interrupt. After return-
ing from run_guest_once() the hypervisor will call lguest_arch_handle_trap()
which will detect the NMI and drop it. It is unlikely that the next host-guest switch

24

4.4. Host-Guest Context Switch

fails, too.
Finally, in line 12 of the code listing, the switcher code itself is called. The eax

register is set to the current core’s struct lguest_pages’s address and ebx is set
to the guest’s page directory address. lguest_entry is a structure containing the
switcher code’s entry offset and the segment selector LGUEST_CS the code shall be
executed on. Now, the switch_to_guest assembler routine (see Listing 4.2) which
just has been called shall be regarded line by line:

Lines 3f push the host’s segment registers and frame pointer onto the stack. They
will be popped back when returning to the host.

Lines 10f The task state segment register must be pushed onto the stack. Linux’
original lguest implementation does not need to do this, because the Linux
kernel uses only one task state segment per core. MetalSVM utilizes hardware
task switching, therefore this TSS’s descriptor number can be one of several
possible ones and needs to be saved.

Line 13 The host’s stack pointer is saved in the lguest_pages structure.

Lines 15f As eax contains the struct lguest_pages’ address, it is only necessary
to add the offset that the regs field has within the struct to get the address of
the guest’s set of registers. The stack pointer is set to this address - this way
the guest stack instead of the host stack is modified by a possibly occuring
NMI.

Lines 19f load GDT and IDT register values from lguest_pages.

Lines 23f The guest’s TSS register must be loaded before switching the CR3 register
to the shadow page tree. Intel x86 CPUs alter the TSS descriptor by setting
a used-bit after loading with the “ltr” instruction. To protect from loading
a TSS twice, issuing the “ltr” instruction on a TSS with a used-bit, which
is already set, provokes a general protection fault. Therefore, this change
in the host’s TSS has to be reverted immediately. After changing the CR3
register to the shadow page trees, the struct_page which has been used to
save the host’s state is only mapped read-only to isolate host from guest. The
used-bit of the previous TSS is not changed automatically by issuing the “ltr”
instruction - it is more common to switch TSS registers at a task switch with
a far jump denoting both the next task’s instruction pointer and its TSS. This
is not possible at this point.

Lines 26f load the host-GDT address into the edx register. So, 𝑒𝑑𝑥 + 𝑒𝑐𝑥 + 5 is
the address of byte 5 in the host’s TSS descriptor, where bit 2 is the used-bit
which needs to be cleared.

Line 29 loads the shadow page tree address into the CR3 register. Now the page
with the host state structure is mapped read-only and the guest cannot harm
it.

25

4. Design and Implementation of the Hypervisor for MetalSVM

Lines 31f All the guest registers are simply popped off the stack.

Line 43 steps over the trapnum and errcode fields in the lguest_regs structure.
These fields are needed elsewhere to save interrupt number and error code
before switching back to the host.

Line 45 Entering the guest code looks like returning from an interrupt. Finally, the
context switch is complete.

�
1 ENTRY(switch_to_guest)
2
3 pushl %ss
4 pushl %es
5 pushl %ds
6 pushl %gs
7 pushl %fs
8 pushl %ebp
9

10 str %ecx
11 pushl %ecx
12
13 movl %esp , LGUEST_PAGES_host_sp (%eax)
14
15 movl %eax , %edx
16 addl $LGUEST_PAGES_regs , %edx
17 movl %edx , %esp
18
19 lgdt LGUEST_PAGES_guest_gdt_desc (%eax)
20
21 lidt LGUEST_PAGES_guest_idt_desc (%eax)
22
23 movl $(GDT_ENTRY_TSS *8), %edx
24 ltr %dx
25
26 movl (LGUEST_PAGES_host_gdt_desc +2)(% eax), %edx
27 andb $0xFD , 0x5(%edx , %ecx)
28
29 movl %ebx , %cr3
30
31 popl %eax
32 popl %ebx
33 popl %ecx
34 popl %edx
35 popl %esi
36 popl %edi
37 popl %ebp
38 popl %gs
39 popl %fs
40 popl %ds
41 popl %es
42
43 addl $8, %esp
44
45 iret�

Listing 4.2: Host-guest switcher code (metalsvm/drivers/lguest/x86/switcher_32.S)

Switching back from guest to host is very similar, hence not explained here ex-
cept for a detail: Ensuring to find the address of the host’s state structure within

26

4.4. Host-Guest Context Switch

struct lguest_pages. This must success even if an interrupt occurs while restor-
ing the guest’s registers within the switch process from host to guest. This situation
is tricky:

Listing 4.3 shows the definition of struct lguest_pages and two assembler lines
extracted from the routine which switches back from guest to host. Whenever
an interrupt occurs at guest’s side the TSS sets the stack pointer back to within
struct lguest_regs in struct lguest_pages. This way, trap number, error code
and registers are automatically saved into the lguest_regs structure by the CPU.
Now it is a crucial task to find the read-only host state structure to restore the
host context. The only hint lies within the stack pointer: As it was set to the last
ring 0 stack position in struct lguest_regs by the TSS, it is only a matter of
offset-calculation to find the read-only host state structure.

The only problem left is that it is not safe to assume that the stack has the same
well-defined height on every context switch back to the host. If a fault occurs while
the guest registers are popped off the stack while switching from host to guest, a
simple offset-calculation to find the read-only host state structure will not work
out any longer. This problem is solved by aligning struct lguest_pages at page-
boundary and putting its struct lguest_regs to the very end of the first page it
occupies. The space between is filled with spare bytes. With this layout, the stack
pointer’s lowest 12 bits can be just cleared out to obtain the lguest_page’s base
address (see the assembler code in the listing). Using this as base address, simple
offset calculations can be applied again to find the read-only host state structure.

Combined with comprehension of this detail the rest of the context switch code
switching back to the host is finally analogous to the switch from host to guest. �
1 /* lguest .h */
2 struct lguest_pages {
3 /* This is the stack page mapped rw in guest */
4 char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
5 struct lguest_regs regs;
6
7 /* This is the host state & guest descriptor page , ro in guest */
8 struct lguest_ro_state state;
9 } __attribute__ ((aligned(PAGE_SIZE)));

10
11 /* switcher_32 .S */
12 /* ... */
13 movl %esp , %eax
14 andl $(~(1 << PAGE_SHIFT - 1)), %eax
15 /* ... */�
Listing 4.3: Definition of the lguest_pages structure and restoring the stack pointer dur-

ing guest-host context switch

27

4. Design and Implementation of the Hypervisor for MetalSVM

4.5. Segments
Segments are the heart of lguest’s guest-isolation functionality, because the loaded
code segment defines at which privilege level the CPU is currently running on. It is
very important to keep track on the changes the guest tries to write to the global
descriptor table. If necessary the hypervisor needs to reject or alter them to hold
the guest off from obtaining the host’s privilege level.

The highest privilege level the guest can obtain during its lifetime is the ring 1
privilege level. To achieve this, the guest’s kernel space code and data segments
have to be manipulated. These and the task switch segment (TSS) as well as the
doublefault TSS need to be secured from any write-access by the guest.

4.5.1. Special Segments for the Guest’s Kernel Space
Most important for kernel space are the LGUEST_CS and LGUEST_DS segments which
are to be used by the code and data segment registers.

LGUEST_CS’s segment descriptor has the same flags like the KERNEL_CS segment
descriptor on which Linux kernel space code is usually running on. The only differ-
ence is the descriptor privilege level flag which is set to a value of 1 to let the guest
run on ring 1. The same applies respectively for LGUEST_DS and KERNEL_DS, which
is generally used for data-, extra- and stack-segment registers. The host kernel has
its own versions of LGUEST_CS and LGUEST_DS with ring 0 set as descriptor privilege
levels. These are loaded on entering the context switch code.

As the TSS preserves the old code segment and determines which segment shall
be loaded to the stack-segment register etc., it is considered to be too powerful to be
manipulated by the guest. The hypervisor ensures that it never switches the guest
to ring 0.

4.5.2. Managing GDT Manipulation Requests
The guest has no write-access to the GDT because it is mapped read-only in its vir-
tual address space. Therefore there are two hypercalls available for it to manipulate
segment descriptors: LHCALL_LOAD_GDT_ENTRY and LHCALL_LOAD_TLS.

LHCALL_LOAD_GDT_ENTRY takes an 8 byte segment descriptor as parameter. The
hypervisor will then install it into the GDT which is destined to be active while guest
execution. Of course the hypervisor will not accept to install segment descriptors
which could enable the guest in obtaining full privileges.

If the proposed segment descriptor would give the guest full privileges the hyper-
visor just overwrites the descriptor privilege field (DPL) with a value of 1 standing
for ring 1. The accessed-bit within the descriptor’s type field will be set by the
hypervisor, too. If it is not set in the moment the guest tries to load the segment,
the CPU would try to set it and fail, because it has insufficient privileges.

Mentioned fields the hypervisor changes within the segment descriptor are shown
in Figure 4.5. There are four segment descriptors to which the guest has no access,

28

4.5. Segments

Segment Limit 15:00Base Address 15:00

Base 31:24 Base 23:16Type
Seg.
Limit
19:16

G
D
/
B

L
A
V
L

D DPL S

0151631

32394063 47485455

A

Figure 4.5.: Structure of a segment descriptor [9]

thus the hypervisor rejects any attempt to change them: The TSS, LGUEST_CS,
LGUEST_DS and doublefault TSS segment descriptors.

LHCALL_LOAD_TLS is a hypercall for optimization, as the three thread-local storage
segment descriptors need to be changed on every context switch and will be processed
by the hypervisor in a row.

29

4. Design and Implementation of the Hypervisor for MetalSVM

4.6. Interrupts
The guest machine depends on the interrupt and exception functionality of the
CPU, just like any other machine. Of course, the host must stay in full control over
the interrupt/exception mechanism at any time to ensure the system’s security and
integrity. Also, the host needs to be able to reschedule the guest’s virtualization
process to serve its other processes with CPU time equally well.

Initially, all interrupts/exceptions which occur while the guest is running cause a
context switch back to the host. Depending on the kind of interrupt it is delivered
to the host just as if it occured while the host was running. Exceptions are delivered
to the hypervisor for further analysis. To enable this distinction, a special interrupt
descriptor table is installed when switching the context to the guest: Its vector
number entries point to three different handlers:

Vector numbers 0, 1, 3...31, 128 Most of these are architecturally defined excep-
tions, which are issued by the CPU if errors occur or special instructions are
used. The operating system has to handle them to keep the ability to run
properly. Handling these interrupts mostly involves the need for higher priv-
ileges. Thus, the interrupt/exception number is pushed onto the stack and
delivered to the hypervisor.
Vector number 128 is typically used for system calls, which are issued by
the guest’s user space processes, so they should not be delivered to the host
operating system but instead sent back to the guest.

Vector number 2 Used for Non-maskable interrupt: The handler for this does
nothing else than returning to normal execution of the guest code.

Vector number 32...127, 129...255 Being issued by some external cause or by
software, interrupts assigned to vector numbers within this range need to be
delivered to the host operating system and not the hypervisor code itself. For
this purpose the context is switched back like usual, but in the following the
host’s IDT is searched for the current interrupt’s IDT descriptor to jump to
the right handler. After handling the interrupt the hypervisor continues ex-
ecution on host side as if it returned from switching back from the guest as
usual.

4.6.1. Managing IDT Manipulation Requests
The guest can issue an LHCALL_LOAD_IDT_ENTRY hypercall to the host to tell where
it wants an interrupt or exception to be delivered for handling. The hypervisor will
then write the segment descriptor the guest provides into the guest-IDT. Before the
hypervisor accepts a segment it checks some attributes and its privilege level:

∙ The guest is not allowed to change interrupt descriptors of the vector numbers
2, 8, 15 and LGUEST_TRAP_ENTRY (commonly 0x1f). These are for NMI, double

30

4.6. Interrupts

Offset 15:0Segment Selector

Offset 31:16 TypeP DPL 0

0151631

32394063 4748

D 0 0 0 Intel
reserved

Figure 4.6.: Structure of an interrupt descriptor [9]

fault, the spurious interrupt10, and lguest-Hypercall. The guest will never have
to handle them by itself.

∙ Solely interrupt- and trap-gate-types are allowed as segment descriptors.

∙ Just in case the guest tries to install an interrupt descriptor with a privilege
level lower than 1 (that means assigning a higher privilege than allowed to the
interrupt handler) the hypervisor overwrites this flag to ring 1 priority.

All in all, the hypervisor copies only the interrupt handler’s address, present-bit,
privilege level and descriptor type into the IDT. Segment descriptors with an unset
present-bit are zeroed out completely. As seen in Figure 4.6 the fields which are
completely overwritten by the hypervisor are colored dark grey and the fields which
are just checked are colored light grey.

4.6.2. Guest-Interrupt Handling in the Hypervisor
Immediately after every context switch back to the host, the hypervisor calls the
procedure lguest_arch_handle_trap()11 to determine the kind of interrupt/ex-
ception which caused the guest execution to stop. This procedure does in general
consist of one switch-case construct handling the following Intel-defined interrupt
vector numbers:

Vector number 13 General protection fault - This can be caused by the following:
∙ I/O instructions - As Linux’ paravirtualization structure is not absolutely

complete, the guest tries to probe I/O ports at boot time. The hypervi-
sor lets the guest just skip them and write return values to the guest’s
registers with all bits set which is the common value to signalize that this
I/O port is not used.

10Spurious interrupts do occur because of noise and other conditions. They are not supposed to
need special handling.

11defined in metalsvm/drivers/lguest/x86/core.c

31

4. Design and Implementation of the Hypervisor for MetalSVM

∙ The vmcall instruction - If the Intel VT extension is not available or
available but not initialized (lguest does not support it, therefore it is not
initialized), this instruction causes a general protection fault. It will be
redirected to the exception 6 handler.

∙ If the general protection fault was not due one of the causes above it will
be redirected to the guest later.

Vector number 6 Invalid opcode - If this exception was caused by a vmcall instruc-
tion this is either a rerouted vector number 13 or 6 on a CPU not supporting
the Intel VT extension. In both cases the 3 bytes long instruction “vmcall”
will be patched with another 3 bytes “int 0x1f; nop”. In any other case it
is delivered back to the guest later.

Vector number 7 Device not available fault - This happens if a guest process tried
to utilize the floating point unit. The hypervisor manages its register state
storing and restoring.

Vector number 14 Page fault - The hypervisor will refresh the corresponding shadow
page tree to fulfill the MMU’s demand. If it cannot find a corresponding entry
within the guest’s page tables while it is trying to achieve this, the exception
will be delivered to the guest which has to refresh its own page tree.

Vector number LGUEST_TRAP_ENTRY (0x1f) Hypercall - The guest issued
a hypercall and its parameters lie within the processor’s all-purpose registers
which already have been saved in the guest processor state structure. The
hypervisor sets a pointer to this structure of parameters which will be checked
in its hypercall-processing section later.

If the hypervisor decides to send one of the interrupts/exceptions above back to
the guest or an interrupt occured which has a vector number lower than 32 but not
listed above, it will try to deliver it to the guest now.

4.6.3. Delivering Interrupts Back to the Guest
Interrupt delivery to the guest works by simulating the processor’s real actions in
the case of an interrupt/exception before letting the guest execute its code again.
The hypervisor achieves this by forming the stack in the same way the processor
does when it is interrupting the execution.

There are different cases and types of interrupt/exception which the stack has to
reflect before calling the handler routine:

∙ It makes a difference on which privilege level the processor is running before
it is being interrupted:
If it is running in kernel space, the processor will save the EFLAGS register,
code segment and instruction pointer onto the stack and jump to the handler
(see Figure 4.7(a)).

32

4.6. Interrupts

As user space processes do not have sufficent privileges to handle interrupt-
s/exceptions, a privilege level switch to a higher privilege (lower ring number)
is necessary12. The TSS arranges a switch of both the stack pointer and stack
segment to the kernel stack. While the user space stack stays unchanged, the
former user space stack segment and stack pointer are pushed onto the kernel
stack. After this the same registers are pushed onto the stack just like in the
kernel space interrupt case described before. (see Figure 4.7(b))

∙ Vector numbers 8, 10 to 14, and 17 are used for exceptions which supply error
numbers. These are pushed onto the stack by the processor after saving the
register states. The hypervisor has to distinguish if it needs to simulate this,
too.

After handling, the stack’s state will be rolled back to the state from before the
interrupt has occured by using the iret instruction. It is the last instruction of
every interrupt/exception handler in general.

ESP
before IR

ESP
after IR

Error Code
old EIP
old CS

old EFLAGS

stack's
grow dir.

Address
space

kernel space
stack

(a) Interrupt in kernel space

stack's
grow dir.

Address
space

ESP
before IR

ESP
after IR

Error Code
old EIP
old CS

old EFLAGS

stack's
grow dir.

Address
space

old ESP
old SS

user space
stack

kernel space
stack

(b) Interrupt in user space

Figure 4.7.: Stack layouts before and after the occurence of an interrupt

4.6.4. The Guest’s Possibilities to Block Interrupts
Usually on the x86 architecture interrupts are enabled and disabled with the sti
(“set interrupt-bit”) and cli (“clear interrupt-bit”) instructions. These instructions
manipulate the EFLAGS register, thus require a privilege level the guest does not
have.

The lguest-guest’s interrupts are generally delivered to the host first. Therefore
the guest can either tell the host to selectively disable the delivery of specific in-
terrupts or to completely disable the delivery of interrupts at all. For this purpose
12The privilege level during the interrupt is defined in the segment descriptor which is chosen by

the interrupt descriptor

33

4. Design and Implementation of the Hypervisor for MetalSVM

there is a field irq_enabled and a bitmap field blocked_interrupts within struct
lguest_data to which both host and guest have access.

The hypervisor uses the function interrupt_pending()13 to determine if there
are interrupts to be delivered to the guest. Whenever an interrupt already has oc-
cured – and thus needs to be delivered to the guest – but its bit in blocked_interrupts
is set, it will be ignored. The delivery will take place later when the guest has cleared
the block-bit again. If the irq_enabled field’s bit 8 is unset (which is also the
interrupt-bit in the EFLAGS register) the function interrupt_pending() will not
return any interrupt vector number at all. The lguest Linux kernel provides its own
procedures at guest side to replace the architecture-specific set/unset calls for the
interrupt-bit. Selective interrupt control is abstracted behind a simple configurable
lguest IRQ controller “chip” interface.

Another last problem is keeping the irq_enable field (which simulates the guest’s
EFLAGS register) consistent after issuing the iret instruction. As already described
before, the iret instruction is used to return from interrupts and pops the values
stored on the stack back into the according registers. The last stack value to restore
is the EFLAGS value which will not be written to the EFLAGS register, because the
guest’s privilege level is insufficient. However, the value needs to be written back to
the irq_enabled field within struct lguest_data.

In the Linux kernel the usual iret call at the end of each interrupt handler
is encapsulated into a procedure which is part of the collection of procedures the
struct paravirt_ops points to. Lguest replaces it by the code seen in Listing 4.4.
This procedure does nothing more than reading the EFLAGS value from the stack
and writing it to lguest_data.irq_enabled.

�
1 ENTRY(lguest_iret)
2 pushl %eax
3 movl 12(% esp), %eax
4 lguest_noirq_start:
5 movl %eax ,%ss:lguest_data+LGUEST_DATA_irq_enabled
6 popl %eax
7 iret
8 lguest_noirq_end:�

Listing 4.4: lguest_iret code (linux/arch/x86/lguest/i386_head.S)

It is possible that an interrupt occurs between writing to the irq_enable field and
issuing the iret instruction, but this would lead to faulty behaviour. Thus, this op-
eration needs to be atomic. The labels lguest_noirq_start and lguest_noirq_end
mark the area which shall be protected from interrupts. Before delivering interrupts,
the hypervisor calls try_deliver_interrupts(), which checks if the guest’s instruc-
tion pointer has a value between both label’s values. If this condition matches then
the hypervisor will not deliver the interrupt.

13defined in metalsvm/drivers/lguest/interrupts_and_traps.c

34

4.6. Interrupts

4.6.5. Optimization: Direct Interrupt Delivery
Letting interrupts and exceptions go to the host and then redelivering them to the
guest takes the cost of a guest-host-guest context switch plus the cost of forming
the stack with set_guest_interrupt(). It is desirable to have an optimization for
that. Especially system calls issued by the guest’s user space applications do not
need to be delivered to the host - under this circumstance it is pure overhead to
deliver such interrupts over this detour.

A guest is not aware about which interrupts or exceptions are sent to it directly
and which are not. The hypervisor distinguishes to which vector number this opti-
mization may be applied when it refreshes the guest’s IDT entries. Differentiation
between directly deliverable and not directly deliverable interrupts/exceptions takes
both kind of interrupt descriptor and the vector number into consideration:

The first important attribute of interrupt descriptors which needs to be distin-
guished is its gate type. Interrupt descriptors describe either an interrupt-gate or a
trap-gate. Bits 39 to 41 denote the descriptor’s gate type: The value 0x6 denotes
the interrupt-gate type while 0x7 denotes the trap-gate type. Only trap-gate de-
scriptors are allowed to be delivered to the guest directly. For other descriptor types
the processor disables interrupts before entering the handler function of the corre-
sponding vector number - what the guest is not allowed to do. Hence, only trap-gate
descriptors are optimizable. The second constraint is the right vector number: Ex-
ternal interrupts are always supposed to be handled by the host, as the guest has no
real hardware to deal with. Thus, Interrupts with vector numbers higher or equal
to 32 are never delivered to the guest directly. The system call vector is the only
exceptional case, because it has vector number 0x80 and shall be delivered directly
to the guest always.

Within the allowed range of vector numbers 0 to 31 there is a subset of interrupts
and exceptions, which is still to be delivered to the host always:

Vector numer 6 This is used for the invalid opcode fault. The host needs to see
this first, as it is possible that it must substitute the “vmcall” instruction by
“int 0x1f; nop”.

Vector number 7 If a process within the guest tries to use the floating point unit it
has to be initialized/restored for this purpose. The hypervisor has to do that
with full privileges, because it involves writing into the CR0 register, what the
guest is not allowed to.

Vector number 13 General protection fault - The hypervisor has to emulate the
I/O-behaviour of non-existing devices behind the I/O-ports at boot, so it needs
to see general protection faults before the guest, too.

Vector number 14 Page fault - The hypervisor needs to see page faults at first,
because it maintains the shadow pagetables which are the ones the MMU
really reads from.

35

4. Design and Implementation of the Hypervisor for MetalSVM

Vector number LGUEST_TRAP_ENTRY (0x1f) This interrupt vector is used
by hypercalls. It does not make sense to deliver it to the guest, of course.

�
1 void copy_traps(const struct lg_cpu *cpu , idt_entry_t *idt ,
2 const unsigned long *def)
3 {
4 unsigned int i;
5
6 for (i=0; i < 256; ++i) {
7 const idt_entry_t *gidt = &cpu ->arch.idt[i];
8
9 /* Do not alter indirect traps */

10 if (! direct_trap(i)) continue;
11
12 /* direct delivery only for trap - gates */
13 if (idt_type (*gidt) == 0xF)
14 idt[i] = *gidt;
15 else
16 default_idt_entry (&idt[i], i, def[i], gidt);
17 }
18
19 }�

Listing 4.5: copy_traps code (metalsvm/drivers/lguest/interrupts_and_traps.c)

The hypervisor calls copy_traps() (as seen in Listing 4.5) before entering the
guest whenever the IDT was changed before. The function direct_trap() does
the differentiation between directly deliverable and not directly deliverable inter-
rupts/exceptions. When checking for the gate type in line 13 the code does not
use the trap-gate code 0x7 but 0xf instead, because the gate-size-bit is taken into
consideration, too. In general, it is always set in 32 bit Linux.

4.6.6. Timer Supply
Not only for scheduling the guest needs configurable interrupts. In general the guest
kernel decides at what point of time it wants to be interrupted or woken up. For this
purpose it issues the time difference between this chosen point of time and current
time in nanoseconds to the host, using the LHCALL_SET_CLOCKEVENT hypercall.

In the original lguest implementation in Linux the hypervisor takes advantage of
the high resolution timer infrastructure. Such a high resolution timer is represented
by a configurable structure (struct hrtimer14) containing primarily the timestamp
at which it shall be triggered and a pointer to the handler function which then shall
be called.

The hypervisor sets the point of time the event shall be triggered at to the time the
guest desires. The hypervisor’s handler function for this event does merely set the
first bit in the hypervisor’s guest-interrupt bitmap. This denotes that an interrupt
with vector number 0 shall be delivered to the guest next time it is being run.
14defined in linux/include/linux/hrtimer.h

36

4.6. Interrupts

As MetalSVM did not provide any timer interface at the time when the hypervisor
was implemented, one had to be created. The high resolution timer interface like
seen in the Linux kernel is quite sophisticated, as it enables the user to choose
events within a granularity of nanoseconds. Supplying timer interrupts with such
a fine granularity is not necessary. It will merely make the guest run slower if the
intervals are too sparse. The usual timestamp values the guest requests to receive
an interrupt at mostly lay in orders of milliseconds or hundreds of microseconds
in the future. Therefore MetalSVM is still able to supply interrupts in the right
intervals in the majority of cases. Without modifying MetalSVM’s own interrupt
configuration it was possible to install a small and simple timer interface into the
timer_handler()15 procedure being periodically called by the APIC timer which is
configured to 100 Hz.

The implementation can be seen in Listing B.5: Timer events are organized in a
linked list where new items can be added by the hypervisor for example.

15defined in metalsvm/arch/x86/kernel/timer.c

37

4. Design and Implementation of the Hypervisor for MetalSVM

CR3

lguest PGD
pointer

Page directory Page table Virtual page frame

Guest page tree

CR3

Page directory Page table Physical page frame

Host page tree

Offset

Page flags

+ Guest mem base

Guest-virtual address:

Host-virtual address:

01112212231

Figure 4.8.: Shadow paging mechanism explained

4.7. Shadow Paging
Paging is an efficient way to create virtual address spaces for programs and be-
ing able to isolate them from each other. Furthermore, additional features like
read/write-protection and access-/dirty-bits enable great flexibility within the op-
erating system’s ways to handle memory pages.

Of course all of these features are desired in a virtual computer, but to use paging
some privileged operations are needed which should not be exposed to the guest.
Anyway, host and guest need different flags for the same pages, because the host
may for example want to swap unused pages of a guest out of memory. This involves
reading/setting flags the guest should not even know about.

This problem is solved by a technique called shadow paging: The guest kernel has
its own page trees like usual, but it will only convert guest-virtual to guest-physical
addresses which are merely host-virtual. The whole guest-virtual to host-physical-
calculation works the following way (see Figure 4.8):

1. Some guest process tries to access memory which is mapped in the guest page
tree but not yet recognized by the MMU (TLB-miss).

2. A page fault occurs, but the exception is not delivered to the guest kernel – a

38

4.7. Shadow Paging

context switch to the host kernel space is done.

3. The host kernel recognizes the nature of the exception and will find the guest’s
page tree behind a special pointer which is used by the guest instead of the CR3
register. It traverses through the guest page tree to find out the guest-physical
address and the flags the guest stores for it.

4. The host-virtual address is just linear the guest-physical address plus the
guest’s memory base address.

5. The host kernel will look up the right physical address with its native page
tree (it does not use the shadow page tree for itself) and fill it into the shadow
page tree. At this time there is some flag checking, too, as the guest may show
faulty behaviour.

6. After the next context switch to the guest the original guest-process continues
just like after an ordinary page fault.

For setting page directory entries or page table entries in the shadow page table
the guest kernel has to do a hypercall. It is especially useful that hypercalls are
batchable. This way the guest can prepare a whole list of entries to be written and
cast out one hypercall to map them all at once limiting the amount of overhead.
The host will not keep an unlimited amount of shadow page trees for every guest
process, because it has neither knowledge nor control over how many processes the
guest has running. The number of shadow page trees is limited to a constant number.
Currently, when a new shadow page tree is needed (being signalized by the guest
using a hypercall), the host kernel will overwrite a randomly chosen existing shadow
page tree.

Whenever the guest wants to flush the MMU this is an expensive operation,
because it will cast a hypercall resulting in the host kernel emptying the whole
shadow page tree. A lot of page faults will occur until the most page table entries
are mapped again, but this way the shadow paging is kept quite simple and it is
unlikely that the next guest process needs them all.

If the host cannot determine a guest-virtual to guest-physical translation within
the guest’s pagetables, it delivers the page fault to the guest. Of course, another
host-guest context switch is needed until the MMU can finally translate accesses to
this page.

The function demand_page() represents the heart of the portrayed mechanism
and will be explained in more detail (see Listing 4.6):

Lines 9-28 The host reads the guest’s page directory and checks if it is present and
the specific entry is valid. If the equivalent entry in the shadow page directory
is not present, a new one will be allocated and the same flags applied.

Linues 32-45 Now the host reads the page table entry within the guest’s corre-
sponding page table, checks if it is present and valid and if the corresponding
guest process is allowed to access the page.

39

4. Design and Implementation of the Hypervisor for MetalSVM

Lines 47-50 The host has to set the flags within the guest’s page tables the MMU
would normally set. This includes access and dirty flags.

Lines 55-63 With writing to the shadow page tree and guest page tree the address
translation is finished.

Lines 9, 35, 63 lgread()/lgwrite() are convenience-functions for reading/writ-
ing from/to guest-virtual addresses.

Whenever demand_page() returns 0, the page fault is sent back to the guest which
then has to set an appropriate page table entry.

40

4.7. Shadow Paging

�
1 int demand_page(struct lg_cpu *cpu , uint32_t vaddr , int errcode)
2 {
3 uint32_t gpgd;
4 uint32_t *spgd;
5 uint32_t *gpte_ptr;
6 uint32_t gpte;
7 uint32_t *spte;
8
9 gpgd = lgread(cpu , gpgd_addr(cpu , vaddr), uint32_t);

10 if (!(gpgd & PG_PRESENT)) {
11 return 0;
12 }
13
14 spgd = spgd_addr(cpu , cpu ->cpu_pgd , vaddr);
15
16 if (!((* spgd) & PG_PRESENT)) {
17 /* There is no shadow entry yet , so we need to allocate a new one. */
18 uint32_t ptepage = get_zeroed_pages (1);
19 if (! ptepage) {
20 kill_guest(cpu , "Allocating␣shadow -pte␣page␣-␣out␣of␣memory.");
21 return 0;
22 }
23 check_gpgd(cpu , gpgd);
24
25 /* Copy the flags from guest pgd into shadow pgd as we don ’t
26 * need to change them . */
27 *spgd = (uint32_t)(ptepage | (gpgd & 0xfff));
28 }
29
30 /* Step further to lower level in the guest page table .
31 * Keep this address because it might be updated later . */
32 gpte_ptr = (uint32_t *) gpte_addr(cpu , gpgd , vaddr);
33
34 /* Actual pte value */
35 gpte = lgread(cpu , (uint32_t)gpte_ptr , uint32_t);
36
37 /* If there is no guest - virtual to guest - physical translation ,
38 * we cannot help . */
39 if (!(gpte & PG_PRESENT)) return 0;
40
41 if ((errcode & 2) && !(gpte & PG_RW)) return 0;
42
43 if ((errcode & 4) && !(gpte & PG_USER)) return 0;
44
45 check_gpte(cpu , gpte);
46
47 gpte |= PG_ACCESSED;
48 if (errcode & 2) gpte |= PG_DIRTY;
49
50 spte = spte_addr(cpu , *spgd , vaddr);
51
52 release_pte (*spte);
53
54 /* If this was a write , we need the guest page to be writable */
55 if (gpte & PG_DIRTY)
56 *spte = gpte_to_spte(cpu , gpte , 1);
57 else
58 /* Unset the writable -bit to be able to return here later
59 * on the next write attempt . */
60 *spte = gpte_to_spte(cpu , gpte & ~PG_RW , 0);
61
62 /* Write the guest pte entry back with updated flags . */
63 lgwrite(cpu , (uint32_t)gpte_ptr , uint32_t , gpte);
64
65 return 1;
66 }�

Listing 4.6: Shadow paging code (metalsvm/drivers/lguest/pagetables.c)

41

4. Design and Implementation of the Hypervisor for MetalSVM

4.8. Hypercalls
As the guest kernel is running on ring 1 and therefore is not privileged to perform
many architecture-specific operations, it has to signalize which action it needs the
host to perform. This is similar to system calls which are used whenever a user
space process needs to call the kernel to do something. When a guest kernel calls
the host kernel this is referred to as Hypercall.

Hypercalls exist for the following operations:

∙ Flushing a batch of asynchronous hypercalls

∙ Initialization of the lguest guest-structure host and guest share

∙ Shutdown/Restart the guest

∙ Virtual memory operations (Set PGD, PTE, new page table, Flush MMU)

∙ Load GDT, TLS or interrupt descriptor table entries

∙ Set a new kernel stack

∙ Set TS flag for the floating point unit

∙ Prompt the host to send pending guest-interrupts

∙ Send a notification to the host if the guest crashed or to signalize pending IO
for virtual devices

4.8.1. How the Guest Casts a Hypercall
Casting a hypercall is very similar to casting a system call: The caller fills the
parameters into the eax, ebx, ecx, edx, esi registers and issues an interrupt. The
first parameter in the eax register always identifies the kind of hypercall (one from
the list above) – the other registers are free to use for the semantics of the specific
hypercall.

Lguest uses interrupt number 0x1f for hypercalls. KVM-guests use hypercalls with
a very similar structure, but instead of issuing an interrupt the CPU instruction
vmcall (available on CPUs with with the Intel VT extension) is used. The lguest
developers decided to do it the same way to have more code in common with KVM.
Thus, every lguest-guest initially casts hypercalls with the vmcall instruction. The
hypervisor will then overwrite the instruction with a software interrupt instruction.
This way lguest is not bound to CPUs which provide the Intel VT extension.

Another important difference between system calls and hypercalls is that user
space processes are not allowed to cast hypercalls, of course.

42

4.8. Hypercalls

4.8.2. Processing Hypercalls in the Hypervisor
After issuing a hypercall, the guest execution is stopped immediately and the context
is switched back to the hypervisor. Within the context switch back to the host
the parameter values in the registers are saved onto the guest state saving stack.
Later in the hypervisor those register values can be easily mapped to a structure
hcall_args which enables comfortable access. Processing the hypercall is done in
the main virtualization loop before re-entering the guest as seen in Figure 4.1.

The guest can cast hypercalls by either issuing an “int 0x1f” or “vmcall” in-
struction. Unfortunately a vmcall causes a general protection fault on CPUs which
do not provide the Intel VT extension. This is significantly slower then just casting
a software interrupt. Because of this, the host kernel analyzes if a general protec-
tion fault was caused by a vmcall. In this case, the host kernel overwrites it with
“int 0x1f; nop”, because it is a 3 byte instruction.

Processing the hypercall itself is done within the procedure do_hcall()16. Again,
this code looks very similar to how system call handling procedures are implemented
in general. It embodies a large switch-case-statement to dispatch the kind of hyper-
call which is just delivered as an enumeration value written to the eax register by
the guest.

4.8.3. Asynchronous Hypercalls as an Optimization
Because some kinds of hypercall (e.g. virtual memory operations) have to be used
very often in one line they can be used as both synchronous or asynchronous calls
to reduce the overhead of often repeated host-guest-switching.

Synchronous hypercalls are just done by filling given arguments into registers and
casting an interrupt. The parameters of asynchronous hypercalls in contrast are
stored in a ring buffer with elements just as broad as struct hcall_args. Pending
asynchronous hypercalls in this ring buffer will be processed by the host before every
context switch within the do_async_hcalls()16 procedure. The implementation of
this ring buffer is very primitive: The hypervisor keeps a variable containing the
index of the last processed asynchronous hypercall. Just processed Hypercalls are
marked as empty by writing 0xff into a status array at the same index like the
processed hypercall has in the ring buffer.

For each asynchronous hypercall the hypervisor copies the parameters structure
out of the ring buffer to where do_hcall() expects its parameters and calls it
then. After having lined up a batch of asynchronous hypercalls the guest will just
issue the LHCALL_FLUSH_ASYNC hypercall. This hypercall does nothing more than
just stopping guest execution, as the host will process all pending hypercalls before
entering the guest again.

16defined in metalsvm/drivers/lguest/hypercalls.c

43

4. Design and Implementation of the Hypervisor for MetalSVM

4.9. VirtIO Implementation
At this time the Linux Kernel supports several virtualization systems, both as guest
and host. Next to Xen, KVM and lguest there are User Mode Linux, VMWare’s
VMI and different solutions by IBM. Each of them except KVM and lguest has its
own implementation of virtual devices for the guest while KVM and lguest use the
VirtIO driver interface.

The VirtIO interface was initially designed for paravirtualization but it can also
be ported to full-virtualized guests as VirtIO does also provide a standard virtio-
over-PCI interface. VirtIO’s ultimate goal is becoming the standard framework for
I/O virtualization in hypervisors. Besides high efficiency by design it does not try to
emulate complex hardware – it merely lets host and guest exchange I/O data over
buffers with a low amount of overhead. The implementation of device I/O takes part
in a frontend and backend part of the driver which is implemented in the guest and
respectively the host who are communicating using VirtIO. Every implementation
of the VirtIO interface consists of a virtqueue transport mechanism implementation
and the device abstraction API.

The following subsections explain the general principles and data structures of
the VirtIO API, followed by some implementation details in MetalSVM.

4.9.1. The VirtIO Device Abstraction API
Any device is represented by an instance of struct virtio_device which has an-
other member struct virtqueue_ops containing several pointers to functions as
an abstraction layer.

Before use the virtio driver registers itself. Recognition of device type and features
is achieved with 32 bit fields for device type and vendor followed by the device
configuration. The configuration takes place in the implementation of the functions
struct virtio_config_ops points to.

The group of configuration operations consists of methods to access the following
four parts of functionality:

feature-bits The host proposes features to the guest by setting specific feature-bits.
If the guest wants to use a feature it acknowledges this back to the host.

configuration space A structure read- and writable by both host and guest to
share configuration values of the device. (e. g. the MAC address of a network
interface)

status-bits An 8 bit variable to enable the guest signalize the device status to the
host

reset operation This enables to reset the device and re-initialize all its configuration
and status-bits.

44

4.9. VirtIO Implementation

virtqueue A function returning a populated structure containing I/O-queues called
find_vq() which is explained in the following.

After successful configuration the device I/O will employ the virtqueues it ob-
tained from the find_vq() config_ops function. Devices can have a different num-
ber of virtqueues, e. g. separated ones for input and output. Access to the virtqueue
is provided by another abstraction layer represented by struct virtqueue_ops (see
Listing 4.7). �
1 struct virtqueue_ops {
2 int (* add_buf)(struct virtqueue *vq,
3 struct scatterlist sg[],
4 unsigned int out_num ,
5 unsigned int in_num ,
6 void *data);
7 void (*kick)(struct virtqueue *vq);
8 void *(* get_buf)(struct virtqueue *vq,
9 unsigned int *len);

10 void (* disable_cb)(struct virtqueue *vq);
11 bool (* enable_cb)(struct virtqueue *vq);
12 };�

Listing 4.7: The virtqueue access function abstraction

Typically buffers containing specific I/O data are added to the virtqueue with the
add_buf() function and then the other side (e. g. host, but other guests are possible,
too) is notified by the kick() procedure initiating a context switch from guest to
host. Multiple buffers can be batched this way. The other side calls get_buf() to
consume this data.

The enable_cb() and disable_cb() calls are for enabling/disabling interrupts
which occur on the arrival of new data. This does not guarantee that interrupts are
disabled – these calls are merely supposed to signalize that interrupts are unwanted
to optimize the device’s throughput.

4.9.2. virtio_ring: Linux’ Virtqueue Implementation
Linux implements the virtqueues which are needed by the VirtIO API using ring-
buffers which are in broad use within many highspeed I/O implementations.

This specific virtio_ring implementation involves use of three data structures
which are also illustrated in Figure 4.9:

descriptor table This structure contains all length and (guest-physical) address
pairs of used buffers and also provides a field for flags and a pointer for chain-
ing elements together. The flags are used to signalize if the next pointer is
valid and whether this buffer is read-only or write-only.

available ring The array inside this structure represents a ring of descriptor table
indices of buffers which are ready to consume while the index field is free-
running and marks the beginning. The flags field is used to suppress interrupts.

45

4. Design and Implementation of the Hypervisor for MetalSVM

Address Buffer Length Flags Next *

Descriptor Table

Flags

Running
Index

ID

R
in

g

Available Ring

R
in

g
Flags

Running
Index

ID Length

Used Ring

Figure 4.9.: VirtIO ring structures

used ring Being similar to the available ring, it is used by the host to mark which
descriptor chains have been consumed already.

C structure definitions of this data structures can be found in Listing B.6.

4.9.3. VirtIO in MetalSVM
Since MetalSVM just implements the hypervisor and no special devices were added
to lguest, the only part to be implemented of VirtIO was the driver’s backend. In the
original Linux implementation of lguest, the hypervisor-part of the kernel also con-
tains VirtIO-related code. Linux-lguest optimizes device event management using
particular event file descriptors which do not exist in MetalSVM. Thus, the backend
implementation of the VirtIO drivers is merely found within the user space part of
MetalSVM’s lguest hypervisor implementation – the lguest_loader application.

When Linux boots as an lguest-guest it assumes the existence of a VirtIO console
device. Therefore the lguest_loader application does supply the console device to
match this as the minimal device configuration. The application keeps a linked list
of VirtIO devices with a pointer named devices. During the initialization before
booting the guest the procedure setup_console() is called. It adds a new device
called console to the device list. The corresponding enumeration value in the type
field within the device descriptor structure finally characterizes this device as a
console device. Providing both input and output functionality, the console device
uses two separate virtqueues which are added to the device structure.

Early at boot the guest kernel will recognize the device list which is mapped
into its address space at a specific location and issue a notification hypercall to the
hypervisor. Since notifications are directed to the user space process, it gets a guest
memory space address from the read()-call it was blocking on while the hypervisor
did the virtualization. Before the guest kernel recognizes and initializes its VirtIO
devices, it also uses notification hypercalls to output early boot messages. In this
case the user space process just reads a pointer value pointing to the output string
within the guest’s memory range. If the pointer value is below the initial guest

46

4.9. VirtIO Implementation

memory limit17 it points to an output string. Otherwise it points to a virtqueue
which has new buffers to consume what then is done in the device-specific way. The
console device will just print the buffers onto the screen and mark them as used.

Console input as well as any other input from outside to the guest is written into
buffers of the virtqueue. Write operations to buffers can be batched before the user
space loader writes an interrupt request to /dev/lguest. The hypervisor will then
issue an interrupt with a device-specific vector number to the guest.

17which was pushed to higher addresses when adding new devices via get_pages(n), see the lguest
loader subsection

47

5. Evaluation
At current time, the implementation of the lguest hypervisor in the MetalSVM
kernel is fully functional and works accurately on both the Intel SCC and usual
x86-hardware.

Since the developers of the Linux kernel do good work in respect to the execution
speed and overall system-efficiency, it is quite challenging to reach or even beat the
original lguest hypervisor’s performance. However, the MetalSVM kernel’s small size
and specialized target environment allow for certain optimizations. Booting on usual
x86 hardware, MetalSVM is able to show up the Linux guest’s shell input prompt
(which marks the end of the boot process) within one second from the beginning of
the host’s boot process.

Several measurements have been taken to analyze the hypervisor’s performance
in comparison with its original implementation in Linux: The cost of a host-guest
context switch (one way), page faults in the guest’s user space and several system
calls as well as a real-life application. The performance of the host-guest context
switch is very important, because it occurs forth and back on nearly every inter-
rupt1, exception and hypercall. Fortunately, MetalSVM’s implementation is faster
than the implementation in Linux, although the switcher’s code had to be adapted
(instructions were added) to work under MetalSVM. Page faults are very expensive
in both Linux’ and MetalSVM’s lguest implementation. Two host-guest context
round trips are needed between the MMU’s page fault exception occurence and the
user space’s final successful access to the corresponding mapped page. The lguest
developers are also aware of this design-based circumstance.

5.1. Measurement Details and Interpretation
The same guest kernel and ramdisk were run under both hypervisors for being able
to present a fair performance comparison between both implementations. The guest
kernel was compiled with a minimalistic configuration from Linux vanilla sources
of version 2.6.32. To provide a spartan system environment, the initial ramdisk in
use did merely contain a small set of tools compiled from the Busybox project2 and
the applications which performed the actual measurements. The applications were
compiled statically with the diet libc3. Both hypervisors can be loaded with this set
of kernel and ramdisk without the need of further modification. Test platform was

1Especially system calls are optimized by not being delivered to the host first.
2http://www.busybox.net
3http://www.fefe.de/dietlibc/

49

http://www.busybox.net
http://www.fefe.de/dietlibc/

5. Evaluation

a computer with an Intel Celeron 550 CPU, which has a clock frequency of 2 GHz
and 1024 kB L2 cache.

Table 5.1 shows the tick count of each mechanism/function mentioned before and
the ratio between both implementation’s costs. In every measurement the “rdtsc”
processor instruction was used to record the tick count.

Measured
Hypervisor

Ratio 𝑀𝑆𝑉 𝑀
𝐿𝑖𝑛𝑢𝑥Linux MetalSVM

Host-guest context switch 1 406 1 347 96 %
Page fault 40 426 31 978 79 %
getpid() 1 039 626 60 %
fork() 446 224 301 831 68 %
vfork() 163 421 117 536 72 %
pthread_create() 3 678 968 40 022 838 1 088 %
jacobi solver 156.07 · 109 98.95 · 109 63 %
jacobi solver (2 instances) 316.68 · 109 198.96 · 109 63 %

Values measured in processor ticks

Table 5.1.: Performance measurements taken in the guest system

5.1.1. Host-Guest Context Switch
This is the only measurement which has actually been taken in kernel space at host
side: The guest kernel was modified to issue 1 000 empty hypercalls at early boot.
On host side, the tick count between the first and last hypercall was taken and
averaged. The half of the average tick count can then finally be considered as the
cost for one context switch from host to guest or the other way around, because
both procedures are very symmetric.

Although MetalSVM takes a lower tick count in switching the context than Linux,
the difference is not of magnificient dimension. However, MetalSVM’s higher per-
formance in this aspect is explained with lower overhead in the hypervisor’s main
loop, where one cycle has to be taken. It does not need to respect the same aspects
of Linux’ complex structure like the original implementation has to.

5.1.2. Page Fault
This and the following measurements have been taken in the guest’s user space. The
cost of a page fault was measured by an application which allocates an array with
the size of 10 240 pages (40 MB). If the array was not initialized before, striding with
simple write instructions through it with a step size of page size (4 kB) provokes a

50

5.1. Measurement Details and Interpretation

page fault on every step. The tick count of a full array traversal, divided by the
number of loop iteration steps, represents the tick cost of one page fault.

Linux provides a sophisticated mechanism for swapping guest pages out of the
memory onto the hard disk. MetalSVM does not provide this feature, thus saves a
significant amount of overhead.

5.1.3. System Calls
As the first system call for being measured getpid() was chosen. It involves a
minimum of payload-code being executed at kernel space side, thus being able to
approximate the cost of an empty system call. Both fork() and vfork() as well
as pthread_create() system calls are especially interesting. Every system call is
issued 1 000 times to average the tick count later. In terms of address space repli-
cation, fork() is the most stressing candidate for the hypervisor’s shadow paging
mechanism, because address space replication in the guest involves a lot of page al-
location and release in the hypervisor. MetalSVM uses a pool of pages to accelerate
this. The acceleration is observable at nearly any task switch, as this involves the
hypervisor releasing and allocating a whole page tree in the majority of cases4. The
performance of vfork() in Linux as a MetalSVM guest is still better, but not as
significantly better as fork(), compared to the Linux hypervisor implementation.
vfork() does no address space duplication which works faster under MetalSVM,
therefore its performance gain is not as high as in fork(). pthread_create() is
obviously slow when run under the MetalSVM hypervisor. Tests have shown, that
the low resolution of the current timer implementation is slowing down the guest
very much. The tick count of pthread creation is reducible with a finer granular-
ity of the timer infrastructure. A timer implementation in MetalSVM allowing the
guest for choosing interrupt intervals in a magnitude of tens of microseconds should
improve the performance significantly.

5.1.4. The Jacobi Solver Application
The Jacobi algorithm is used to solve systems of linear equations. For this purpose
the Jacobi application creates a random 128×128 matrix of double precision floating
point fields. Determining the solution vector took about 425 000 iterations. The
measurement was taken several times and the average tick count was calculated
afterwards.

The floating point unit’s registers are stored and restored by the hypervisor. If
several processes use it for calculations, the guest has to cast hypervalls for this to
the hypervisor between nearly every task switch. Two instances of the application
were run to see if this has an impact on the performance. Since the guest kernel
uses the hypercall mechanism’s batching feature, unnecessary overhead is avoided
successfully.

4The hypervisor keeps only a limited number of page trees to switch between.

51

6. Conclusion
The objective to implement a virtualization layer for the operating system ker-
nel MetalSVM was achieved. Linux is relatively frugal to paravirtualize due to
its paravirt_ops structure and VirtIO virtual driver implementation. Therefore,
merely a hypervisor with a sufficient set of features had to be chosen and ported for
this project.

MetalSVM is now equipped with a kernel extension enabling for paravirtualizing
Linux kernels without any need to modify them. The presented implementation
shows a better performance than the original implementation in Linux in many
aspects.

Lguest was initially not designed for virtualizing kernels of versions differing from
the host’s, therefore the specification of an ABI was omitted for the sake of simplicity.
This thesis shows that this constraint is not as strong as expected. Actually because
of not being tied to such an ABI, this hypervisor implementation will be easier to
adapt to match the overall project’s constraints. The performance issues shown in
the evaluation are rooted in the fact that the young operating system MetalSVM is
different from Linux in many regards. Especially the absence of a high resolution
timer infrastructure highlights a possible construction site for optimizations in the
future.

A branch of MetalSVM’s code base supporting shared virtual memory between
multiple cores does already exist. This together with the current lguest implementa-
tion sets the foundation for future research and development to accomplish a virtual
SMP architecture supplying cache coherence by software.

53

A. Background Knowledge
ABI Application Binary Interface: Describes conventions like data types, sizes and

alignment to define an interface

bare metal Software is said to be run on bare metal if there is no further abstraction
layer between itself and the underlying hardware

Cache Coherence consistence of cached data originally stored in memory shared
by multiple cores

ELF Executable and Linkable Format: The common file format of executables, ob-
ject files and shared libraries under Linux and several UNIXes

GRUB Grand Unified Bootloader : Multiboot specification conform boot loader
mainly used to boot UNIX-like systems (http://www.gnu.org/software/
grub/)

Kernel Main component of a computer operating system managing the system’s
resources for applications

Kernel Module The Linux kernel provides the possibility to load code at runtime
to extend its functionality

Magic String A special byte string containing specific values hopefully too improb-
able to occur accidentally – Often placed at special positions in files or other
structures which need to fulfill a specific format for verification and/or recog-
nition

MMU Memory Management Unit: Translates virtual addresses to physical ad-
dresses using the page tables the operating system provides and its Translation
Lookaside Buffer

NMI Non-Maskable Interrupt: Some interrupts cannot be masked with the IF flag
using the standard instruction ”cli“ for masking interrupts

Page On systems implementing the concept of virtual memory the whole memory
range is partitioned into blocks (then called pages) of fixed size

SMP Symmetric Multiprocessing: A class of computer architectures where multi-
ple cores share the same main memory space and are controlled by a single
operating system instance

55

http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/

B. Code Listings
�

1 int run_guest(struct lg_cpu *cpu , unsigned long *user)
2 {
3 /* cpu ->lg -> dead points to NULL or to an error string */
4 while (!cpu ->lg->dead) {
5 unsigned int irq;
6 int more;
7
8 /* The trap handler lguest_arch_handle_trap (cpu) does
9 * set cpu -> hcall in case of a hypercall by the guest . */

10 if (cpu ->hcall) {
11 do_hypercalls(cpu);
12 }
13
14 /* Check if there are device notifications to be delivered */
15 if (cpu ->pending_notify) {
16 *user = cpu ->pending_notify;
17 return sizeof(cpu ->pending_notify);
18 }
19
20 irq = interrupt_pending(cpu , &more);
21 if (irq < LGUEST_IRQS) {
22 try_deliver_interrupt(cpu , irq , more);
23 }
24
25 if (cpu ->lg ->dead) break;
26
27 if (cpu ->halted) {
28 if (interrupt_pending(cpu , &more) < LGUEST_IRQS) {
29 /* Do not reschedule if there
30 * are interrupts left . */
31 }
32 else {
33 reschedule ();
34 }
35 continue;
36 }
37
38 /* Run guest with IRQs disabled . */
39 irq_disable ();
40 lguest_arch_run_guest(cpu);
41 irq_enable ();
42
43 /* There has been some trap we handle now .
44 * (page fault for example .) */
45 lguest_arch_handle_trap(cpu);
46 }
47
48 return -ENOENT;
49 }�

Listing B.1: Lguest’s main loop (metalsvm/drivers/lguest/lguest_core.c)

57

B. Code Listings

�
1 /*
2 * 32- bit kernel entrypoint ; only used by the boot CPU . On entry ,
3 * % esi points to the real - mode code as a 32- bit pointer .
4 * CS and DS must be 4 GB flat segments , but we don ’t depend on
5 * any particular GDT layout , because we load our own as soon as we
6 * can .
7 */
8 __HEAD
9 ENTRY(startup_32)

10
11 /* ... [most code commented out here : BSS initialization] ... */
12
13 # ifdef CONFIG_PARAVIRT
14 /* This is can only trip for a broken bootloader ... */
15 cmpw $0x207 , pa(boot_params + BP_version)
16 jb default_entry
17
18 /* Paravirt - compatible boot parameters . Look to see what architecture
19 we ’re booting under . */
20 movl pa(boot_params + BP_hardware_subarch), %eax
21 cmpl num_subarch_entries , %eax
22 jae bad_subarch
23
24 movl pa(subarch_entries)(,%eax ,4), %eax
25 subl __PAGE_OFFSET , %eax
26 jmp *%eax
27
28 bad_subarch:
29 WEAK(lguest_entry)
30 WEAK(xen_entry)
31 /* Unknown implementation ; there ’s really
32 nothing we can do at this point . */
33 ud2a
34
35 __INITDATA
36
37 subarch_entries:
38 .long default_entry /* normal x86 /PC */
39 .long lguest_entry /* lguest hypervisor */
40 .long xen_entry /* Xen hypervisor */
41 .long default_entry /* Moorestown MID */
42 num_subarch_entries = (. - subarch_entries) / 4
43 .previous
44 # else
45 jmp default_entry
46 # endif /* CONFIG_PARAVIRT */�

Listing B.2: Linux’ startup_32 routine (linux/arch/x86/kernel/head_32.S)

�
1 ENTRY(lguest_entry)
2 /* Initialization hypercall to host */
3 movl $LHCALL_LGUEST_INIT , %eax
4 movl $lguest_data - __PAGE_OFFSET , %ebx
5 int $LGUEST_TRAP_ENTRY
6
7 /* Set up the initial stack so we can run C code . */
8 movl $(init_thread_union+THREAD_SIZE),%esp
9

10 /* Jumps are relative : we ’re running __PAGE_OFFSET too low . */
11 jmp lguest_init+__PAGE_OFFSET�

Listing B.3: Linux’ lguest_entry routine (linux/arch/x86/lguest/i386_head.S)

58

�
1 __init void lguest_init(void)
2 {
3 pv_info.name = "lguest";
4 pv_info.paravirt_enabled = 1;
5 pv_info.kernel_rpl = 1; /* Running on privilege level 1, not 0 */
6 pv_info.shared_kernel_pmd = 1;
7
8 /* A high amount of paravirt_ops is set . */
9

10 /* Interrupt - related operations */
11 pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
12 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
13 pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
14 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
15 pv_irq_ops.safe_halt = lguest_safe_halt;
16
17 /* Setup operations */
18 pv_init_ops.patch = lguest_patch;
19
20 /* Intercepts of various CPU instructions */
21 pv_cpu_ops.load_gdt = lguest_load_gdt;
22 /* ... */
23
24 /* Pagetable management */
25 pv_mmu_ops.write_cr3 = lguest_write_cr3;
26 /* ... */
27
28 /* etc. */
29
30 setup_stack_canary_segment (0);
31
32 switch_to_new_gdt (0);
33
34 /* the guest got this maximum address in the first hypercall */
35 reserve_top_address(lguest_data.reserve_mem);
36
37 lockdep_init ();
38
39 /* Register the panic hypercall */
40 atomic_notifier_chain_register (& panic_notifier_list , &paniced);
41
42 /* disable probing for IDE devices */
43 paravirt_disable_iospace ();
44
45 /* ... [More CPU initialization] ... */
46
47 /* The first virtual device is the console which is set here */
48 add_preferred_console("hvc", 0, NULL);
49
50 /* Register a preliminary console output method */
51 virtio_cons_early_init(early_put_chars);
52
53 pm_power_off = lguest_power_off;
54 machine_ops.restart = lguest_restart;
55
56 /* Paravirt guest initialization is complete . */
57 /* From now on the normal Linux boot code is called */
58 i386_start_kernel ();
59 }�

Listing B.4: Linux’ lguest_init routine (linux/arch/x86/lguest/boot.c)

59

B. Code Listings

�
1 /* This structure definition is taken from MSVM / include / metalsvm / time .h */
2 typedef struct _lrtimer {
3 void (* function)(struct _lrtimer *);
4 uint64_t expires;
5 uint64_t delta;
6 int periodic;
7 struct _lrtimer *next;
8 } lrtimer;
9

10 /* ... */
11
12 static void timer_handler(struct state *s)
13 {
14 uint32_t i;
15
16 #if MAX_CORES > 1
17 if (smp_id () == 0)
18 # endif
19 {
20 timer_ticks ++;
21
22 # ifdef CONFIG_LGUEST
23 lrtimer *tm = lrtimer_list.first;
24 while (tm != NULL) {
25 if (tm ->expires != 0 /* enabled ? */
26 && tm ->expires < timer_ticks /* Expired ? */
27 && tm ->function != NULL /* Function not null ? */) {
28 tm->function(tm);
29 /* Reset it if periodic or disable . */
30 if (tm ->periodic) lrtimer_setalarm(tm, tm->delta , 1);
31 else tm->expires = 0;
32 }
33 tm = tm->next;
34 }
35 # endif
36 }
37 }�

Listing B.5: modified timer_handler() code (metalsvm/arch/x86/kernel/timer.c)

60

�
1 /* Virtio ring descriptors : 16 bytes . These can chain together via " next ". */
2 struct vring_desc {
3 uint64_t addr; /* Guest - physical */
4 uint32_t len;
5 uint16_t flags;
6 uint16_t next;
7 };
8
9 struct vring_avail {

10 uint16_t flags;
11 uint16_t idx;
12 uint16_t ring [];
13 };
14
15 struct vring_used_elem {
16 uint32_t id; /* Index of start of used descriptor chain . */
17 uint32_t len; /* Total length of the descriptor chain
18 which was used (written to) */
19 };
20
21 struct vring_used {
22 uint16_t flags;
23 uint16_t idx;
24 struct vring_used_elem ring [];
25 };
26
27 struct vring {
28 unsigned int num;
29 struct vring_desc *desc;
30 struct vring_avail *avail;
31 struct vring_used *used;
32 };�

Listing B.6: VirtIO structure definitions (metalsvm/include/virtio/virtio_ring.h)

61

Bibliography
[1] ScaleMP. http://www.scalemp.com.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. Treadmarks: shared memory computing on networks of
workstations. Computer, 29(2):18–28, 1996.

[3] M. Chapman and G. Heiser. Implementing transparent shared memory on
clusters using virtual machines. Memory, (April):383–386, 2005.

[4] J. Fisher-Ogden. Hardware support for efficient virtualization. 17:2008, 2006.

[5] R. P. Goldberg. Architectural Principles for Virtual Computer Systems. PhD
thesis, Harvard University, 1973.

[6] G. Heiser. Many-core chips - a case for virtual shared memory. MMCS, pages
5–8, 2009.

[7] IBM Systems. Virtualization Version 2 Release 1, 2005.

[8] Intel Corporation. Cluster OpenMP User’s Guide Version 9.1, 2006.

[9] Intel Corporation. Intel R○ 64 and ia-32 architectures software developer’s man-
ual volume 3a : System programming guide, part 1. System, 3(253666):832,
2010.

[10] Intel Labs. SCC External Architectire Specification (EAS) Revision 1.1, 2010.

[11] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the linux virtual
machine monitor. In Proceedings of the Linux Symposium Volume 1, Ottawa,
Ontario, Canada, June 2007.

[12] J. Nakajima and A. K. Mallick. Hybrid-Virtualization - Enhanced Virtualization
for Linux. 2007.

[13] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl. A Fast Inter-Kernel Commu-
nication and Synchronization layer for MetalSVM. In Proceedings of the 3rd
MARC Symposium, KIT Scientific Publishing, Ettlingen, Germany, July 2011.

[14] J. S. Robin and C. E. Irvine. Analysis of the intel pentium’s ability to support
a secure virtual machine monitor. In Proceedings of the 9th conference on
USENIX Security Symposium - Volume 9, pages 10–10, Berkeley, CA, USA,
2000. USENIX Association.

63

Bibliography

[15] R. Russell. lguest: Implementing the little linux hypervisor. In Proceedings of
the Linux Symposium Volume 2, Ottawa, Ontario, Canada, June 2007.

[16] R. Russell. virtio: towards a de-facto standard for virtual i/o devices. SIGOPS
Oper. Syst. Rev., 42:95–103, July 2008.

[17] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt. Bridging the gap
between software and hardware techniques for i/o virtualization. In USENIX
2008 Annual Technical Conference on Annual Technical Conference, pages 29–
42, Berkeley, CA, USA, 2008. USENIX Association.

[18] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and performance in the denali
isolation kernel. SIGOPS Oper. Syst. Rev., 36:195–209, December 2002.

[19] XenSource Inc. Xen User’s Manual for Xen v3.3, 2008.

64

	Titelseite
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 MetalSVM on the Intel SCC
	3 Hypervisors in Virtualization
	3.1 Full Virtualization Versus Paravirtualization
	3.2 Virtualizing the Intel x86 Architecture
	3.2.1 Segmentation
	3.2.2 Privilege Levels, Rings
	3.2.3 Virtual Memory
	3.2.4 I/O Operations
	3.2.5 Interrupt Virtualization

	3.3 Hypervisors in Linux
	3.3.1 Lguest

	4 Design and Implementation of the Hypervisor for MetalSVM
	4.1 Hypervisor Initialization
	4.1.1 Loading the Switcher Pages
	4.1.2 Initializing Page Tables
	4.1.3 Creating /dev/lguest in the Filesystem
	4.1.4 Architecture-Specific Initialization

	4.2 Guest Boot and paravirt_ops
	4.3 Lguest Loader
	4.4 Host-Guest Context Switch
	4.5 Segments
	4.5.1 Special Segments for the Guest's Kernel Space
	4.5.2 Managing GDT Manipulation Requests

	4.6 Interrupts
	4.6.1 Managing IDT Manipulation Requests
	4.6.2 Guest-Interrupt Handling in the Hypervisor
	4.6.3 Delivering Interrupts Back to the Guest
	4.6.4 The Guest's Possibilities to Block Interrupts
	4.6.5 Optimization: Direct Interrupt Delivery
	4.6.6 Timer Supply

	4.7 Shadow Paging
	4.8 Hypercalls
	4.8.1 How the Guest Casts a Hypercall
	4.8.2 Processing Hypercalls in the Hypervisor
	4.8.3 Asynchronous Hypercalls as an Optimization

	4.9 VirtIO Implementation
	4.9.1 The VirtIO Device Abstraction API
	4.9.2 virtio_ring: Linux' Virtqueue Implementation
	4.9.3 VirtIO in MetalSVM

	5 Evaluation
	5.1 Measurement Details and Interpretation
	5.1.1 Host-Guest Context Switch
	5.1.2 Page Fault
	5.1.3 System Calls
	5.1.4 The Jacobi Solver Application

	6 Conclusion
	A Background Knowledge
	B Code Listings
	Bibliography

